Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: N. X. Rao x
  • Refine by Access: All Content x
Clear All Modify Search
N. X. Rao
,
S. C. Ou
, and
K. N. Liou

Abstract

A numerical scheme has been developed to remove the solar component in the Advanced Very High Resolution Radiometer (AVHRR) 3.7-µm channel for the retrieval of cirrus parameters during daytime. This method uses a number of prescribed threshold values for AVHRR channels 1 (0.63 µm), 2 (0.8 µm), 3 (3.7 µm), 4 (10.9 µm), and 5 (12 µm) to separate clear and cloudy pixels. A look-up table relating channels 1 and 3 solar reflectances is subsequently constructed based on the prescribed mean effective ice crystal sizes and satellite geometric parameters. An adding–doubling radiative transfer program has been used to generate numerical values in the construction of the look-up table. Removal of the channel 3 solar component is accomplished by using the look-up table and the measured channel 1 reflectance. The cloud retrieval scheme described in Ou et al. has been modified in connection with the removal program. The authors have applied the removal–retrieval scheme to the AVHRR global area coverage daytime data, collected during the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment cirrus intensive field observation (FIRE IFO) at 2100 UTC 28 October 1986 over the Wisconsin area. Distributions of the retrieved cloud heights and optical depths are comparable to those determined from Geostationary Operational Environmental Satellite visible and IR channels data reported by Minnis et al. Morwver, verifications of the retrieved cirrus temperature and height against lidar data have been carried out using results reported from three FIRE IFO nations. The retrieved cloud heights are within 0.5 km of the measured lidar values.

Full access
S.C. Ou
,
K.N. Liou
,
Y. Takano
,
N.X. Rao
,
Q. Fu
,
A.J. Heymsfield
,
L.M. Miloshevich
,
B. Baum
, and
S.A. Kinne

Abstract

Using the data obtained from the Advanced Very High Resolution Radiometer (AVHRR) 3.7-µm and 10.9-µm channels, a retrieval scheme has been developed to simultaneously infer cirrus cloud optical depth and mean effective ice crystal size based on the theory of radiative transfer and parameterizations. A numerical scheme is further developed to remove the solar component in the 3.7-µm radiance for applications to daytime satellite data. This scheme is based on the correlation between the 3.7-µm (solar) and 0.63-µm reflectances. Validation of the algorithm has been performed by using various datasets that were collected during the FIRE-II IFO (Nov-Dec 1991) at Coffeyville, Kansas. We have focused on the 26 November and 5 December cases. The retrieval analysis over a 0.5°×1.0° area is performed around Coffeyville for each case based on AVHRR-HRPT data. For validation the authors analyze the photomicrograph data collected by the balloonborne replicator, determine the microphysical and optical properties of the sampled cirrus clouds, and derive their position at the satellite overpass based on sounding data. It is demonstrated that the retrieved cirrus cloud temperature, mean effective ice crystal size, and optical depth closely match the observed values. Further, the retrieved cirrus cloud properties are applied to the computation of surface radiative fluxes using a radiative transfer program that involves a consistent representation of cirrus cloud fields. The computed values are compared with the data measured from ground-based radiometers, and it is shown that the computed downward surface IR and solar fluxes are within 5 and 10 W m−2 of the measured values, respectively, near the time of satellite overpass.

Full access