Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Nagio Hirota x
  • All content x
Clear All Modify Search
Nagio Hirota, Yukari N. Takayabu, and Atsushi Hamada

Abstract

Reproducibility of summer precipitation over northern Eurasia in climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) is evaluated in comparison with several observational and reanalysis datasets. All CMIP5 models under- and overestimate precipitation over western and eastern Eurasia, respectively, and the reproducibility measured using the Taylor skill score is largely determined by the severity of these west–east precipitation biases. The following are the two possible causes for the precipitation biases: very little cloud cover and very strong local evaporation–precipitation coupling. The models underestimate cloud cover over Eurasia, allowing too much sunshine and leading to a warm bias at the surface. The associated cyclonic circulation biases in the lower troposphere weaken the modeled moisture transport from the Atlantic to western Eurasia and enhance the northward moisture flux along the eastern coast. Once the dry west and wet east biases appear in the models, they become amplified because of stronger evaporation–precipitation coupling. The CMIP5 models reproduce precipitation events well over a time scale of several days, including the associated low pressure systems and local convection. However, the modeled precipitation events are relatively weaker over western Eurasia and stronger over eastern Eurasia compared to the observations, and these are consistent with the biases found in the seasonal average fields.

Full access
Nagio Hirota, Mai Ohta, Yousuke Yamashita, and Masaaki Takahashi

Abstract

This study evaluates the relative importance of diabatic heating and intraseasonal disturbances with regard to the variabilities of the East Asian jet stream (EAJS) associated with the East Asian winter monsoon (EAWM). First, strong and weak monsoon years are selected based on the EAWM index of Jhun and Lee, which is highly correlated with the monsoon northerlies between the Eurasian continent and the Pacific. The EAJS is stronger and narrower in strong monsoon years and weaker and wider in weak monsoon years. Model experiments were performed to investigate the atmospheric response to the diabatic heating and the eddy–mean flow feedback from the intraseasonal disturbances. The diabatic heating is closely related to the convective activities. The intraseasonal disturbances include high-frequency components with periods of 3–10 days and low-frequency components with periods of 10–90 days. The model results indicate that the diabatic heating plays a major role maintaining the stronger and weaker EAJS in the strong and weak monsoon years, respectively, whereas the impacts of the eddy feedback are relatively small.

Open access
Nagio Hirota, Yukari N. Takayabu, Masahiro Watanabe, and Masahide Kimoto

Abstract

Precipitation reproducibility over the tropical oceans in climate models is examined. Models participating in phase 3 of the Coupled Model Intercomparison Project (CMIP3) and the current (fifth) version Model for Interdisciplinary Research on Climate (MIROC5) developed by the Atmosphere and Ocean Research Institute, National Institute for Environmental Studies, and Research Institute for Global Change (AORI/NIES/RIGC) are analyzed. Scores of a pattern similarity between precipitation in the models and that in observations are evaluated. The low score models (LSMs) overestimate (underestimate) precipitation over large-scale subsidence (ascending) regions compared to the high score models (HSMs). The sensitivity of deep convection to sea surface temperature (SST) and large-scale subsidence is examined; analysis suggests that dynamical suppression of deep convection by the entrainment of environmental dry air over the subsidence region is very weak, and deep convection follows SST closely in LSMs. For example, deep convective activity is identified over the southeastern Pacific in LSMs, which corresponds to the double intertropical convergence zone (ITCZ) problem. It is suggested that the double ITCZ is associated not only with the local SST but also with the precipitation schemes that control deep convection over the entire tropical oceans. The current version, MIROC5, reproduces precipitation distributions significantly better than the older versions. Precipitation in MIROC5 has a weaker correlation with SST and a stronger correlation with environmental humidity than that in LSMs. The realistic representation of entrainment in regions with dynamical suppression is suggested to be a key factor for better reproducibility of precipitation distributions.

Full access
Nagio Hirota, Yukari N. Takayabu, Masaya Kato, and Sho Arakane

Abstract

Precipitation in excess of 100 mm h−1 in Hiroshima, Japan, on 19 August 2014, caused a flash flood that resulted in 75 deaths and destroyed 330 houses. This study examined the meteorological background of this fatal flood. During this event, considerable filamentary transport of water vapor from the Indochina Peninsula to the Japanese islands occurred, forming a so-called atmospheric river (AR). This AR had a deep structure with an amount of free tropospheric moisture comparable with that of the boundary layer. Furthermore, a cutoff low (COL), detached from the subtropical jet over the central Pacific, moved northwestward to the Japanese islands. Instability associated with the cold core of the COL and dynamical ascent induced in front of it, interacted with the free tropospheric moisture of the AR, which caused the considerable precipitation in Hiroshima. Moreover, the mountains of the Japanese islands played a role in localizing the precipitation in Hiroshima. These roles were separately evaluated on the basis of sensitivity experiments with a cloud-resolving model.

Full access
Yukari N. Takayabu, Shoichi Shige, Wei-Kuo Tao, and Nagio Hirota

Abstract

Three-dimensional distributions of the apparent heat source (Q 1) − radiative heating (QR) estimated from Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) utilizing the spectral latent heating (SLH) algorithm are analyzed. Mass-weighted and vertically integrated Q 1QR averaged over the tropical oceans is estimated as ∼72.6 J s−1 (∼2.51 mm day−1) and that over tropical land is ∼73.7 J s−1 (∼2.55 mm day−1) for 30°N–30°S. It is shown that nondrizzle precipitation over tropical and subtropical oceans consists of two dominant modes of rainfall systems: deep systems and congestus. A rough estimate of the shallow-heating contribution against the total heating is about 46.7% for the average tropical oceans, which is substantially larger than the 23.7% over tropical land.

Although cumulus congestus heating linearly correlates with SST, deep-mode heating is dynamically bounded by large-scale subsidence. It is notable that a substantial amount of rain, as large as 2.38 mm day−1 on average, is brought from congestus clouds under the large-scale subsiding circulation. It is also notable that, even in the region with SSTs warmer than 28°C, large-scale subsidence effectively suppresses the deep convection, with the remaining heating by congestus clouds.

The results support that the entrainment of mid–lower-tropospheric dry air, which accompanies the large-scale subsidence, is the major factor suppressing the deep convection. Therefore, a representation of the realistic entrainment is very important for proper reproduction of precipitation distribution and the resultant large-scale circulation.

Full access
Nagio Hirota, Yukari N. Takayabu, Masahiro Watanabe, Masahide Kimoto, and Minoru Chikira

Abstract

The authors demonstrate that an appropriate treatment of convective entrainment is essential for determining spatial distributions of and temporal variations in precipitation. Four numerical experiments are performed using atmospheric models with different entrainment characteristics: a control experiment (Ctl), a no-entrainment experiment (NoEnt), an original Arakawa–Schubert experiment (AS), and an AS experiment with a simple empirical suppression of convection depending on cloud-layer humidity (ASRH). The fractional entrainment rates of AS and ASRH are constant for each cloud type and are very small in the lower troposphere compared with those in the Ctl, in which half of the buoyancy-generated energy is consumed by entrainment. Spatial and temporal variations in the observed precipitation are satisfactorily reproduced in the Ctl, but their amplitudes are underestimated with a so-called double intertropical convergence zone bias in the NoEnt and AS. The spatial variation is larger in the Ctl because convection is more active over humid ascending regions and more suppressed over dry subsidence regions. Feedback processes involving convection, the large-scale circulation, free tropospheric moistening by congestus, and radiation enhance the variations. The temporal evolution of precipitation events is also more realistic in the Ctl, because congestus moistens the midtroposphere, and large precipitation events occur once sufficient moisture is available. The large entrainment in the lower troposphere, increasing free tropospheric moistening by congestus and enhancing the coupling of convection to free tropospheric humidity, is suggested to be important for the realistic spatial and temporal variations.

Full access
Nagio Hirota, Tomoo Ogura, Hiroaki Tatebe, Hideo Shiogama, Masahide Kimoto, and Masahiro Watanabe

Abstract

This study examines the roles of shallow convection in the eastward propagation of the Madden–Julian oscillation (MJO) using new and old versions of the Model for Interdisciplinary Research on Climate, versions 6 and 5 (MIROC6 and MIROC5), respectively. A major modification of MIROC6 from its previous version, MIROC5, is the implementation of the shallow convection scheme following Park and Bretherton. The MJO representation in MIROC6 is improved compared to MIROC5. The MJO convective envelopes that occur over the Indian Ocean, which decay too early over the western Pacific in MIROC5, propagate farther into the eastern Pacific in MIROC6. In the initial stage of the MJO development, the shallow convection transports boundary layer moisture upward forming an important moisture source for the lower free troposphere in MIROC6. In the mature stage of the MJO, the deep convection becomes increasingly active with the large amount of moisture in the free troposphere. Accordingly, the moisture anomalies associated with the MJO show an upward- and westward-tilted structure, as in the observations. Conversely, MIROC5 exhibits a dry bias in the lower free troposphere, suggesting that the shallow convective activity is underestimated. A parameter perturbation experiment, modifying the intensity of shallow convection, confirms that enhanced shallow convection reduces the moisture bias in the lower free troposphere and improves the simulation of the MJO in MIROC6.

Open access