Search Results
You are looking at 1 - 10 of 11 items for
- Author or Editor: Nai-Yu Wang x
- Refine by Access: All Content x
Abstract
This study uses Global Precipitation Measurement (GPM) Microwave Imager (GMI) and Ka-precipitation radar observations to quantify the snowfall detection performance for different channel (frequency) combinations. Results showed that the low-frequency-channel set contains limited snow detection information with a 0.34 probability of detection (POD). Much better performance is evident using the high-frequency channels (i.e., POD = 0.74). In addition, if only one high-frequency channel is allowed to be added to the low-frequency-channel set, adding the 183 ± 3 GHz channel presents the largest POD improvement (from 0.34 to 0.50). However, this does not imply that the water vapor is the key information for snowfall detection. Only using the high-frequency water vapor channels showed poor snowfall detection with POD at 0.13. Further analysis of all 8191 possible GMI channel combinations showed that the 166-GHz channels are indispensable for any channel combination with POD greater than 0.70. This suggests that the scattering signature, not the water vapor effect, is essential for snowfall detection. Data analysis and model simulation support this explanation. Finally, the GPM constellation radiometers are grouped into six categories based on the channel availability and their snowfall detection capability is estimated, using channels available on GMI. It is found that type-4 radiometer (all channels) has the best snowfall detection performance with a POD of 0.77. The POD values are only slightly smaller for the type-3 radiometer (high-frequency channels) and type-5 radiometer (all channels except 183 channels).
Abstract
This study uses Global Precipitation Measurement (GPM) Microwave Imager (GMI) and Ka-precipitation radar observations to quantify the snowfall detection performance for different channel (frequency) combinations. Results showed that the low-frequency-channel set contains limited snow detection information with a 0.34 probability of detection (POD). Much better performance is evident using the high-frequency channels (i.e., POD = 0.74). In addition, if only one high-frequency channel is allowed to be added to the low-frequency-channel set, adding the 183 ± 3 GHz channel presents the largest POD improvement (from 0.34 to 0.50). However, this does not imply that the water vapor is the key information for snowfall detection. Only using the high-frequency water vapor channels showed poor snowfall detection with POD at 0.13. Further analysis of all 8191 possible GMI channel combinations showed that the 166-GHz channels are indispensable for any channel combination with POD greater than 0.70. This suggests that the scattering signature, not the water vapor effect, is essential for snowfall detection. Data analysis and model simulation support this explanation. Finally, the GPM constellation radiometers are grouped into six categories based on the channel availability and their snowfall detection capability is estimated, using channels available on GMI. It is found that type-4 radiometer (all channels) has the best snowfall detection performance with a POD of 0.77. The POD values are only slightly smaller for the type-3 radiometer (high-frequency channels) and type-5 radiometer (all channels except 183 channels).
Abstract
A prototype precipitation algorithm for the Advanced Technology Microwave Sounder (ATMS) was developed by using 3-yr coincident ground radar and ATMS observations over the continental United States (CONUS). Several major improvements to a previously published algorithm for the Special Sensor Microwave Imager/Sounder (SSMIS) include 1) considering the different footprint size of ATMS pixels, 2) calculating the uncertainty associated with the precipitation estimation, and 3) extending the algorithm to the 60°S–60°N region using only CONUS observations to construct the database. It is found that the retrieved and radar-observed rain rates agree well (e.g., correlation 0.66) and the one-standard-deviation error bar provides valuable retrieval uncertainty information. The geospatial pattern from the retrieved rain rate is largely consistent with that from radar observations. For the snowfall performance, the ATMS-retrieved results clearly capture the snowfall events over the Rocky Mountain region, while radar observations almost entirely miss the snowfall events over this region. Further, this algorithm is applied to the 60°S–60°N land region. The representative nature of rainfall over CONUS permitted the application of this algorithm to 60°S–60°N for rainfall retrieval, evidenced by the progress and retreat of the major rainbands. However, an artificially large snowfall rate is observed in several regions (e.g., Tibetan Plateau and Siberia) because of frequent false detection and overestimation caused by much colder brightness temperatures.
Abstract
A prototype precipitation algorithm for the Advanced Technology Microwave Sounder (ATMS) was developed by using 3-yr coincident ground radar and ATMS observations over the continental United States (CONUS). Several major improvements to a previously published algorithm for the Special Sensor Microwave Imager/Sounder (SSMIS) include 1) considering the different footprint size of ATMS pixels, 2) calculating the uncertainty associated with the precipitation estimation, and 3) extending the algorithm to the 60°S–60°N region using only CONUS observations to construct the database. It is found that the retrieved and radar-observed rain rates agree well (e.g., correlation 0.66) and the one-standard-deviation error bar provides valuable retrieval uncertainty information. The geospatial pattern from the retrieved rain rate is largely consistent with that from radar observations. For the snowfall performance, the ATMS-retrieved results clearly capture the snowfall events over the Rocky Mountain region, while radar observations almost entirely miss the snowfall events over this region. Further, this algorithm is applied to the 60°S–60°N land region. The representative nature of rainfall over CONUS permitted the application of this algorithm to 60°S–60°N for rainfall retrieval, evidenced by the progress and retreat of the major rainbands. However, an artificially large snowfall rate is observed in several regions (e.g., Tibetan Plateau and Siberia) because of frequent false detection and overestimation caused by much colder brightness temperatures.
Abstract
A prototype generic, unified land surface classification and screening methodology for Global Precipitation Measurement (GPM)-era microwave land precipitation retrieval algorithms by using ancillary datasets is developed. As an alternative to the current radiometer-determined approach, the new methodology is shown to be promising in improving rain detection by providing better surface-cover-type information. The early prototype new surface screening scheme was applied to the current version of the Goddard profiling algorithm that is used for the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (GPROFV6). It has shown improvements in surface-cover-type classification and hence better precipitation retrieval comparisons with TRMM precipitation radar level-2 (L2) (2A25) data and the Global Precipitation Climatology Project (GPCP) version-2.1 (GPCPV2.1) datasets. The new ancillary data approach removes the current dependency of the screening step on relatively different satellite-specific channels and ensures the comparability and continuity of satellite-based precipitation products from different platforms. This is particularly important for advancing the current state of precipitation retrieval over land and for use in merged rainfall products.
Abstract
A prototype generic, unified land surface classification and screening methodology for Global Precipitation Measurement (GPM)-era microwave land precipitation retrieval algorithms by using ancillary datasets is developed. As an alternative to the current radiometer-determined approach, the new methodology is shown to be promising in improving rain detection by providing better surface-cover-type information. The early prototype new surface screening scheme was applied to the current version of the Goddard profiling algorithm that is used for the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (GPROFV6). It has shown improvements in surface-cover-type classification and hence better precipitation retrieval comparisons with TRMM precipitation radar level-2 (L2) (2A25) data and the Global Precipitation Climatology Project (GPCP) version-2.1 (GPCPV2.1) datasets. The new ancillary data approach removes the current dependency of the screening step on relatively different satellite-specific channels and ensures the comparability and continuity of satellite-based precipitation products from different platforms. This is particularly important for advancing the current state of precipitation retrieval over land and for use in merged rainfall products.
Abstract
This study quantifies the relationships among lightning activity, convective rainfall, and associated cloud properties on both convective-system scale (or storm scale) and satellite-pixel scale (~5 km) on the basis of 13 yr of Tropical Rainfall Measuring Mission measurements of rainfall, lightning, and clouds. Results show that lightning frequency is a good proxy to separate storms of different intensity, identify convective cores, and screen out false convective-core signatures in areas of thick anvil debris. Significant correlations are found between storm-scale lightning parameters and convective rainfall for systems over the southern United States, the focus area of the study. Storm-scale convective rainfall or heavy-precipitation area has the best correlation (coefficient r = 0.75–0.85) with lightning-flash area. It also increases linearly with increasing lightning-flash rate, although correlations between convective/heavy rainfall and lightning-flash rate are somewhat weaker (r = 0.55–0.75). Statistics further show that active lightning and intense precipitation are not well collocated on the pixel scale (5 km); for example, only 50% of the lightning flashes are coincident with heavy-rain cores, and more than 20% are distributed in light-rain areas. Simple positive correlations between lightning-flash rate and precipitation intensity are weak on the pixel scale. Lightning frequency and rain intensity have positive probabilistic relationships, however: the probability of heavy precipitation, especially on a coarser pixel scale (~20 km), increases with increasing lightning-flash density. Therefore, discrete thresholds of lightning density could be applied in a rainfall estimation scheme to assign precipitation in specific rate categories.
Abstract
This study quantifies the relationships among lightning activity, convective rainfall, and associated cloud properties on both convective-system scale (or storm scale) and satellite-pixel scale (~5 km) on the basis of 13 yr of Tropical Rainfall Measuring Mission measurements of rainfall, lightning, and clouds. Results show that lightning frequency is a good proxy to separate storms of different intensity, identify convective cores, and screen out false convective-core signatures in areas of thick anvil debris. Significant correlations are found between storm-scale lightning parameters and convective rainfall for systems over the southern United States, the focus area of the study. Storm-scale convective rainfall or heavy-precipitation area has the best correlation (coefficient r = 0.75–0.85) with lightning-flash area. It also increases linearly with increasing lightning-flash rate, although correlations between convective/heavy rainfall and lightning-flash rate are somewhat weaker (r = 0.55–0.75). Statistics further show that active lightning and intense precipitation are not well collocated on the pixel scale (5 km); for example, only 50% of the lightning flashes are coincident with heavy-rain cores, and more than 20% are distributed in light-rain areas. Simple positive correlations between lightning-flash rate and precipitation intensity are weak on the pixel scale. Lightning frequency and rain intensity have positive probabilistic relationships, however: the probability of heavy precipitation, especially on a coarser pixel scale (~20 km), increases with increasing lightning-flash density. Therefore, discrete thresholds of lightning density could be applied in a rainfall estimation scheme to assign precipitation in specific rate categories.
Abstract
This paper describes and evaluates a satellite rainfall estimation technique that combines infrared and lightning information to estimate precipitation in deep convective systems. The algorithm is developed and tested using seven years (2002–08) of TRMM measurements over the southern United States during the warm season. Lightning information is coupled with a modified IR-based convective–stratiform technique (CST) and produces a lightning-enhanced CST (CSTL). Both the CST and CSTL are then applied to the training (2002–04) and independent (2005–08) datasets. In general, this study shows significant improvement over the IR rainfall estimates (rain area, intensity, and volume) by adding lightning information. The CST and CSTL display critical skill in estimating warm‐season precipitation and the performance is very stable. The CST can generally identify the heavy (convective) and light rain regions, while CSTL further identifies convective areas that are missed by CST and removes convective cores that are incorrectly defined by CST. Specifically, the CSTL improves the convective cell detection by 5% and reduces the convective false alarm rate by more than 30%. Similarly, CSTL substantially improves the CST in the overall estimate of instantaneous rainfall rates. For example, when compared with passive microwave estimates, CSTL increases the correlation coefficient by 30%, reduces the bias by 50%, and reduces RMSE by 25%. Both CST and CSTL reproduce the rain area and volume fairly accurately over a region, although both techniques show some degree of overestimation relative to radar estimates.
Abstract
This paper describes and evaluates a satellite rainfall estimation technique that combines infrared and lightning information to estimate precipitation in deep convective systems. The algorithm is developed and tested using seven years (2002–08) of TRMM measurements over the southern United States during the warm season. Lightning information is coupled with a modified IR-based convective–stratiform technique (CST) and produces a lightning-enhanced CST (CSTL). Both the CST and CSTL are then applied to the training (2002–04) and independent (2005–08) datasets. In general, this study shows significant improvement over the IR rainfall estimates (rain area, intensity, and volume) by adding lightning information. The CST and CSTL display critical skill in estimating warm‐season precipitation and the performance is very stable. The CST can generally identify the heavy (convective) and light rain regions, while CSTL further identifies convective areas that are missed by CST and removes convective cores that are incorrectly defined by CST. Specifically, the CSTL improves the convective cell detection by 5% and reduces the convective false alarm rate by more than 30%. Similarly, CSTL substantially improves the CST in the overall estimate of instantaneous rainfall rates. For example, when compared with passive microwave estimates, CSTL increases the correlation coefficient by 30%, reduces the bias by 50%, and reduces RMSE by 25%. Both CST and CSTL reproduce the rain area and volume fairly accurately over a region, although both techniques show some degree of overestimation relative to radar estimates.
Abstract
This paper describes improvements to the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) land rainfall algorithm in version 7 (v7) of the TRMM data products. The correlations between rain rates and TMI 85-GHz brightness temperatures (Tb) for convective and stratiform rain are generated using 7 years of collocated TMI and TRMM precipitation radar (PR) data. The TMI algorithm for estimating the convective ratio of rainfall is also modified. This paper highlights both the improvements in the v7 algorithm and the continuing problems with the land rainfall retrievals. It is demonstrated that the proposed changes to the algorithm significantly lower the overestimation by TMI globally and over large sections of central Africa and South America. Also highlighted are the problems with the 2A12 land algorithm that have not been addressed in the version 7 algorithm, such as large regional and seasonal dependence of biases in the TMI rain estimates, and potential changes to the algorithm to resolve these problems are discussed.
Abstract
This paper describes improvements to the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) land rainfall algorithm in version 7 (v7) of the TRMM data products. The correlations between rain rates and TMI 85-GHz brightness temperatures (Tb) for convective and stratiform rain are generated using 7 years of collocated TMI and TRMM precipitation radar (PR) data. The TMI algorithm for estimating the convective ratio of rainfall is also modified. This paper highlights both the improvements in the v7 algorithm and the continuing problems with the land rainfall retrievals. It is demonstrated that the proposed changes to the algorithm significantly lower the overestimation by TMI globally and over large sections of central Africa and South America. Also highlighted are the problems with the 2A12 land algorithm that have not been addressed in the version 7 algorithm, such as large regional and seasonal dependence of biases in the TMI rain estimates, and potential changes to the algorithm to resolve these problems are discussed.
Abstract
The Goddard profiling algorithm 2010 (GPROF2010) was revised for the Advanced Microwave Scanning Radiometer for Earth Observing System (EOS; AMSR-E) instrument. The GPROF2010 land algorithm was developed for the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), which observes slightly different central frequencies than AMSR-E. A linear transfer function was developed to convert AMSR-E brightness temperatures to their corresponding TMI frequency for raining and nonraining instantaneous fields of view (IFOVs) using collocated brightness temperature and TRMM precipitation radar (PR) measurements. Previous versions of the algorithm separated rain from surface ice, snow, and desert using a series of empirical procedures. These occasionally failed to separate raining and nonraining scenes, leading to failed detection and false alarms of rain. The new GPROF2010, version 2 (GPROF2010V2), presented here, prefaced the heritage screening procedures by referencing annual desert and monthly snow climatologies to identify IFOVs where rain retrievals were unreliable. Over a decade of satellite- and ground-based observations from the Interactive Multisensor Snow and Ice Mapping System (IMS) and AMSR-E allowed for the creation of a medium-resolution (0.25° × 0.25°) climatology of monthly snow and ice cover. The scattering signature of rain over ice and snow is not well defined because of complex emissivity signals dependent on snow depth, age, and melting, such that using a static climatology was a more stable approach to defining surface types. GPROF2010V2 was subsequently used for the precipitation environmental data record (EDR) for the AMSR2 sensor aboard the Global Change Observation Mission–Water 1 (GCOM-W1).
Abstract
The Goddard profiling algorithm 2010 (GPROF2010) was revised for the Advanced Microwave Scanning Radiometer for Earth Observing System (EOS; AMSR-E) instrument. The GPROF2010 land algorithm was developed for the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), which observes slightly different central frequencies than AMSR-E. A linear transfer function was developed to convert AMSR-E brightness temperatures to their corresponding TMI frequency for raining and nonraining instantaneous fields of view (IFOVs) using collocated brightness temperature and TRMM precipitation radar (PR) measurements. Previous versions of the algorithm separated rain from surface ice, snow, and desert using a series of empirical procedures. These occasionally failed to separate raining and nonraining scenes, leading to failed detection and false alarms of rain. The new GPROF2010, version 2 (GPROF2010V2), presented here, prefaced the heritage screening procedures by referencing annual desert and monthly snow climatologies to identify IFOVs where rain retrievals were unreliable. Over a decade of satellite- and ground-based observations from the Interactive Multisensor Snow and Ice Mapping System (IMS) and AMSR-E allowed for the creation of a medium-resolution (0.25° × 0.25°) climatology of monthly snow and ice cover. The scattering signature of rain over ice and snow is not well defined because of complex emissivity signals dependent on snow depth, age, and melting, such that using a static climatology was a more stable approach to defining surface types. GPROF2010V2 was subsequently used for the precipitation environmental data record (EDR) for the AMSR2 sensor aboard the Global Change Observation Mission–Water 1 (GCOM-W1).
Abstract
This study compares three TMI rainfall datasets generated by two versions of NASA’s Goddard Profiling algorithm (GPROF2010 and GPROF2017) and JAXA’s Global Satellite Mapping of Precipitation algorithm (GSMaP) over land, coast, and ocean. We use TRMM precipitation radar observations as the reference, and also include CloudSat cloud profiling radar (CPR) observations as the reference over ocean. First, the dynamic thresholds for rainfall detection used by GSMaP and GPROF2017 have better detection capability, indicating by larger Heidke skill score (HSS) values, compared with GPROF2010 over both land and coast. Over ocean, all three datasets have very similar HSS regardless of including CPR observations. Next, intensity analysis shows that no single dataset performs the best according to all three statistical metrics (correlation, root-mean-square error, and relative bias), except that GSMaP performs the best for stratiform precipitation over coast, and GPROF2017 performs the best for convective precipitation over ocean, based on all three metrics. Finally, an error decomposition analysis shows that the total error and its three components have very different characteristics over several regions among these three datasets. For example, the positive total error in GPROF2010 and GSMaP is primarily caused by the positive hit bias over central Africa, while the false bias in GPROF2017 is largely responsible for this positive total error. For future algorithm development, results from this study imply that a convective–stratiform separation technique may be necessary to reduce the large underestimation for convective rain intensity.
Abstract
This study compares three TMI rainfall datasets generated by two versions of NASA’s Goddard Profiling algorithm (GPROF2010 and GPROF2017) and JAXA’s Global Satellite Mapping of Precipitation algorithm (GSMaP) over land, coast, and ocean. We use TRMM precipitation radar observations as the reference, and also include CloudSat cloud profiling radar (CPR) observations as the reference over ocean. First, the dynamic thresholds for rainfall detection used by GSMaP and GPROF2017 have better detection capability, indicating by larger Heidke skill score (HSS) values, compared with GPROF2010 over both land and coast. Over ocean, all three datasets have very similar HSS regardless of including CPR observations. Next, intensity analysis shows that no single dataset performs the best according to all three statistical metrics (correlation, root-mean-square error, and relative bias), except that GSMaP performs the best for stratiform precipitation over coast, and GPROF2017 performs the best for convective precipitation over ocean, based on all three metrics. Finally, an error decomposition analysis shows that the total error and its three components have very different characteristics over several regions among these three datasets. For example, the positive total error in GPROF2010 and GSMaP is primarily caused by the positive hit bias over central Africa, while the false bias in GPROF2017 is largely responsible for this positive total error. For future algorithm development, results from this study imply that a convective–stratiform separation technique may be necessary to reduce the large underestimation for convective rain intensity.
Abstract
The Goddard profiling algorithm has evolved from a pseudoparametric algorithm used in the current TRMM operational product (GPROF 2010) to a fully parametric approach used operationally in the GPM era (GPROF 2014). The fully parametric approach uses a Bayesian inversion for all surface types. The algorithm thus abandons rainfall screening procedures and instead uses the full brightness temperature vector to obtain the most likely precipitation state. This paper offers a complete description of the GPROF 2010 and GPROF 2014 algorithms and assesses the sensitivity of the algorithm to assumptions related to channel uncertainty as well as ancillary data. Uncertainties in precipitation are generally less than 1%–2% for realistic assumptions in channel uncertainties. Consistency among different radiometers is extremely good over oceans. Consistency over land is also good if the diurnal cycle is accounted for by sampling GMI product only at the time of day that different sensors operate. While accounting for only a modest amount of the total precipitation, snow-covered surfaces exhibit differences of up to 25% between sensors traceable to the availability of high-frequency (166 and 183 GHz) channels. In general, comparisons against early versions of GPM’s Ku-band radar precipitation estimates are fairly consistent but absolute differences will be more carefully evaluated once GPROF 2014 is upgraded to use the full GPM-combined radar–radiometer product for its a priori database. The combined algorithm represents a physically constructed database that is consistent with both the GPM radars and the GMI observations, and thus it is the ideal basis for a Bayesian approach that can be extended to an arbitrary passive microwave sensor.
Abstract
The Goddard profiling algorithm has evolved from a pseudoparametric algorithm used in the current TRMM operational product (GPROF 2010) to a fully parametric approach used operationally in the GPM era (GPROF 2014). The fully parametric approach uses a Bayesian inversion for all surface types. The algorithm thus abandons rainfall screening procedures and instead uses the full brightness temperature vector to obtain the most likely precipitation state. This paper offers a complete description of the GPROF 2010 and GPROF 2014 algorithms and assesses the sensitivity of the algorithm to assumptions related to channel uncertainty as well as ancillary data. Uncertainties in precipitation are generally less than 1%–2% for realistic assumptions in channel uncertainties. Consistency among different radiometers is extremely good over oceans. Consistency over land is also good if the diurnal cycle is accounted for by sampling GMI product only at the time of day that different sensors operate. While accounting for only a modest amount of the total precipitation, snow-covered surfaces exhibit differences of up to 25% between sensors traceable to the availability of high-frequency (166 and 183 GHz) channels. In general, comparisons against early versions of GPM’s Ku-band radar precipitation estimates are fairly consistent but absolute differences will be more carefully evaluated once GPROF 2014 is upgraded to use the full GPM-combined radar–radiometer product for its a priori database. The combined algorithm represents a physically constructed database that is consistent with both the GPM radars and the GMI observations, and thus it is the ideal basis for a Bayesian approach that can be extended to an arbitrary passive microwave sensor.
Abstract
Characterization of the error associated with quantitative precipitation estimates (QPEs) from spaceborne passive microwave (PMW) sensors is important for a variety of applications ranging from flood forecasting to climate monitoring. This study evaluates the joint influence of precipitation and surface characteristics on the error structure of NASA’s Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) surface QPE product (2A12). TMI precipitation products are compared with high-resolution reference precipitation products obtained from the NOAA/NSSL ground radar–based Multi-Radar Multi-Sensor (MRMS) system. Surface characteristics were represented via a surface classification dataset derived from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). This study assesses the ability of 2A12 to detect, classify, and quantify precipitation at its native resolution for the 2011 warm season (March–September) over the southern continental United States. Decreased algorithm performance is apparent over dry and sparsely vegetated regions, a probable result of the surface radiation signal mimicking the scattering signature associated with frozen hydrometeors. Algorithm performance is also shown to be positively correlated with precipitation coverage over the sensor footprint. The algorithm also performs better in pure stratiform and convective precipitation events, compared to events containing a mixture of stratiform and convective precipitation within the footprint. This possibly results from the high spatial gradients of precipitation associated with these events and an underrepresentation of such cases in the retrieval database. The methodology and framework developed herein apply more generally to precipitation estimates from other passive microwave sensors on board low-Earth-orbiting satellites and specifically could be used to evaluate PMW sensors associated with the recently launched Global Precipitation Measurement (GPM) mission.
Abstract
Characterization of the error associated with quantitative precipitation estimates (QPEs) from spaceborne passive microwave (PMW) sensors is important for a variety of applications ranging from flood forecasting to climate monitoring. This study evaluates the joint influence of precipitation and surface characteristics on the error structure of NASA’s Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) surface QPE product (2A12). TMI precipitation products are compared with high-resolution reference precipitation products obtained from the NOAA/NSSL ground radar–based Multi-Radar Multi-Sensor (MRMS) system. Surface characteristics were represented via a surface classification dataset derived from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). This study assesses the ability of 2A12 to detect, classify, and quantify precipitation at its native resolution for the 2011 warm season (March–September) over the southern continental United States. Decreased algorithm performance is apparent over dry and sparsely vegetated regions, a probable result of the surface radiation signal mimicking the scattering signature associated with frozen hydrometeors. Algorithm performance is also shown to be positively correlated with precipitation coverage over the sensor footprint. The algorithm also performs better in pure stratiform and convective precipitation events, compared to events containing a mixture of stratiform and convective precipitation within the footprint. This possibly results from the high spatial gradients of precipitation associated with these events and an underrepresentation of such cases in the retrieval database. The methodology and framework developed herein apply more generally to precipitation estimates from other passive microwave sensors on board low-Earth-orbiting satellites and specifically could be used to evaluate PMW sensors associated with the recently launched Global Precipitation Measurement (GPM) mission.