Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Natalie P. Thomas x
  • Refine by Access: All Content x
Clear All Modify Search
Sumant Nigam, Natalie P. Thomas, Alfredo Ruiz-Barradas, and Scott J. Weaver


The linear trend in twentieth-century surface air temperature (SAT)—a key secular warming signal—exhibits striking seasonal variations over Northern Hemisphere continents; SAT trends are pronounced in winter and spring but notably weaker in summer and fall. The SAT trends in historical twentieth-century climate simulations informing the Intergovernmental Panel for Climate Change’s Fifth Assessment show varied (and often unrealistic) strength and structure, and markedly weaker seasonal variation. The large intra-ensemble spread of winter SAT trends in some historical simulations was surprising, especially in the context of century-long linear trends, with implications for the detection of the secular warming signal.

The striking seasonality of observed secular warming over northern continents warrants an explanation and the representation of related processes in climate models. Here, the seasonality of SAT trends over North America is shown to result from land surface–hydroclimate interactions and, to an extent, also from the secular change in low-level atmospheric circulation and related thermal advection. It is argued that the winter dormancy and summer vigor of the hydrologic cycle over middle- to high-latitude continents permit different responses to the additional incident radiative energy from increasing greenhouse gas concentrations.

The seasonal cycle of climate, despite its monotony, provides an expanded phase space for the exposition of the dynamical and thermodynamical processes generating secular warming, and an exceptional cost-effective opportunity for benchmarking climate projection models.

Full access
Allison B. Marquardt Collow, Natalie P. Thomas, Michael G. Bosilovich, Young-Kwon Lim, Siegfried D. Schubert, and Randal D. Koster


Record-breaking heatwaves and wildfires immersed Siberia during the boreal spring of 2020 following an anomalously warm winter. Springtime heatwaves are becoming more common in the region, with statistically significant trends in the frequency, magnitude, and duration of heatwave events over the past four decades. Mechanisms by which the heatwaves occur and contributing factors differ by season. Winter heatwave frequency is correlated with the atmospheric circulation, particularly the Arctic Oscillation, while the frequency of heatwaves during the spring months is highly correlated with aspects of the land surface including snow cover, albedo, and latent heat flux. Idealized AMIP-style experiments are used to quantify the contribution of suppressed Arctic sea ice and snow cover over Siberia on the atmospheric circulation, surface energy budget, and surface air temperature in Siberia during the winter and spring of 2020. Sea ice concentration contributed to the strength of the stratospheric polar vortex and Arctic Oscillation during the winter months, thereby influencing the tropospheric circulation and surface air temperature over Siberia. Warm temperatures across the region resulted in an earlier-than-usual recession of the winter snowpack. The exposed land surface contributed to up to 20% of the temperature anomaly during the spring through the albedo feedback and changes in the ratio of the latent and sensible heat fluxes. This, in combination with favorable atmospheric circulation patterns, resulted in record-breaking heatwaves in Siberia in the spring of 2020.

Restricted access
Natalie P. Thomas, Michael G. Bosilovich, Allison B. Marquardt Collow, Randal D. Koster, Siegfried D. Schubert, Amin Dezfuli, and Sarith P. Mahanama


Heat waves are extreme climate events that have the potential to cause immense stress on human health, agriculture, and energy systems, so understanding the processes leading to their onset is crucial. There is no single accepted definition for heat waves, but they are generally described as a sustained amount of time over which temperature exceeds a local threshold. Multiple different temperature variables are potentially relevant, because high values of both daily maximum and minimum temperatures can be detrimental to human health. In this study, we focus explicitly on the different mechanisms associated with summertime heat waves manifested during daytime hours versus nighttime hours over the contiguous United States. Heat waves are examined using the National Aeronautics and Space Administration Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Over 1980–2018, the increase in the number of heat-wave days per summer was generally stronger for nighttime heat-wave days than for daytime heat-wave days, with localized regions of significant positive trends. Processes linked with daytime and nighttime heat waves are identified through composite analysis of precipitation, soil moisture, clouds, humidity, and fluxes of heat and moisture. Daytime heat waves are associated with dry conditions, reduced cloud cover, and increased sensible heating. Mechanisms leading to nighttime heat waves differ regionally across the United States, but they are typically associated with increased clouds, humidity, and/or low-level temperature advection. In the midwestern United States, enhanced moisture is transported from the Gulf of Mexico during nighttime heat waves.

Free access