Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Neil M. Taylor x
- Refine by Access: All Content x
Severe thunderstorms are a common occurrence in summer on the Canadian prairies, with a large number originating along the Alberta, Canada, foothills, just east of the Rocky Mountains. Most of these storms move eastward to affect the Edmonton–Calgary corridor, one of the most densely populated and fastest-growing regions in Canada. Previous studies in the United States, Europe, and Canada have stressed the importance of mesoscale features in thunderstorm development. However, such processes cannot be adequately resolved using operational observation networks in many parts of Canada. Current conceptual models for severe storm outbreaks in Alberta were developed almost 20 years ago and do not focus explicitly on mesoscale boundaries that are now known to be important for thunderstorm development.
The Understanding Severe Thunderstorms and Alber ta Boundary Layers Experiment (UNSTABLE) is a field and modeling study aiming to improve our understanding of the processes associated with the initiation of severe thunderstorms, to refine associated conceptual models, and to assess the ability of convectivescale NWP models to simulate relevant physical processes. As part of UNSTABLE in 2008, Environment Canada and university scientists conducted a pilot field experiment over the Alberta foothills to investigate mesoscale processes associated with the development of severe thunderstorms. Networks of fixed and mobile surface and upper-air instrumentation provided observations of the atmospheric boundary layer at a level of detail never before seen in this region. Preliminary results include the most complete documentation of a dryline in Canada and an analysis of variability in boundary layer evolution across adjacent forest and crop vegetation areas. Convective-scale NWP simulations suggest that although additional information on convective mode may be provided, there is limited benefit overall to downscaling to smaller grid spacing without assimilation of mesoscale observations.
Severe thunderstorms are a common occurrence in summer on the Canadian prairies, with a large number originating along the Alberta, Canada, foothills, just east of the Rocky Mountains. Most of these storms move eastward to affect the Edmonton–Calgary corridor, one of the most densely populated and fastest-growing regions in Canada. Previous studies in the United States, Europe, and Canada have stressed the importance of mesoscale features in thunderstorm development. However, such processes cannot be adequately resolved using operational observation networks in many parts of Canada. Current conceptual models for severe storm outbreaks in Alberta were developed almost 20 years ago and do not focus explicitly on mesoscale boundaries that are now known to be important for thunderstorm development.
The Understanding Severe Thunderstorms and Alber ta Boundary Layers Experiment (UNSTABLE) is a field and modeling study aiming to improve our understanding of the processes associated with the initiation of severe thunderstorms, to refine associated conceptual models, and to assess the ability of convectivescale NWP models to simulate relevant physical processes. As part of UNSTABLE in 2008, Environment Canada and university scientists conducted a pilot field experiment over the Alberta foothills to investigate mesoscale processes associated with the development of severe thunderstorms. Networks of fixed and mobile surface and upper-air instrumentation provided observations of the atmospheric boundary layer at a level of detail never before seen in this region. Preliminary results include the most complete documentation of a dryline in Canada and an analysis of variability in boundary layer evolution across adjacent forest and crop vegetation areas. Convective-scale NWP simulations suggest that although additional information on convective mode may be provided, there is limited benefit overall to downscaling to smaller grid spacing without assimilation of mesoscale observations.
Abstract
Pan-Africa convection-permitting regional climate model simulations have been performed to study the impact of high resolution and the explicit representation of atmospheric moist convection on the present and future climate of Africa. These unique simulations have allowed European and African climate scientists to understand the critical role that the representation of convection plays in the ability of a contemporary climate model to capture climate and climate change, including many impact-relevant aspects such as rainfall variability and extremes. There are significant improvements in not only the small-scale characteristics of rainfall such as its intensity and diurnal cycle, but also in the large-scale circulation. Similarly, effects of explicit convection affect not only projected changes in rainfall extremes, dry spells, and high winds, but also continental-scale circulation and regional rainfall accumulations. The physics underlying such differences are in many cases expected to be relevant to all models that use parameterized convection. In some cases physical understanding of small-scale change means that we can provide regional decision-makers with new scales of information across a range of sectors. We demonstrate the potential value of these simulations both as scientific tools to increase climate process understanding and, when used with other models, for direct user applications. We describe how these ground-breaking simulations have been achieved under the U.K. Government’s Future Climate for Africa Programme. We anticipate a growing number of such simulations, which we advocate should become a routine component of climate projection, and encourage international coordination of such computationally and human-resource expensive simulations as effectively as possible.
Abstract
Pan-Africa convection-permitting regional climate model simulations have been performed to study the impact of high resolution and the explicit representation of atmospheric moist convection on the present and future climate of Africa. These unique simulations have allowed European and African climate scientists to understand the critical role that the representation of convection plays in the ability of a contemporary climate model to capture climate and climate change, including many impact-relevant aspects such as rainfall variability and extremes. There are significant improvements in not only the small-scale characteristics of rainfall such as its intensity and diurnal cycle, but also in the large-scale circulation. Similarly, effects of explicit convection affect not only projected changes in rainfall extremes, dry spells, and high winds, but also continental-scale circulation and regional rainfall accumulations. The physics underlying such differences are in many cases expected to be relevant to all models that use parameterized convection. In some cases physical understanding of small-scale change means that we can provide regional decision-makers with new scales of information across a range of sectors. We demonstrate the potential value of these simulations both as scientific tools to increase climate process understanding and, when used with other models, for direct user applications. We describe how these ground-breaking simulations have been achieved under the U.K. Government’s Future Climate for Africa Programme. We anticipate a growing number of such simulations, which we advocate should become a routine component of climate projection, and encourage international coordination of such computationally and human-resource expensive simulations as effectively as possible.