Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Nicholas J. Lutsko x
  • All content x
Clear All Modify Search
Nicholas J. Lutsko

Abstract

Increases in the severity of heat stress extremes are potentially one of the most impactful consequences of climate change, affecting human comfort, productivity, health, and mortality in many places on Earth. Heat stress results from a combination of elevated temperature and humidity, but the relative contributions of each of these to heat stress changes have yet to be quantified. Here, conditions for the baseline specific humidity are derived for when specific humidity or temperature dominates heat stress changes, as measured using the equivalent potential temperature (θ E). Separate conditions are derived over ocean and over land, in addition to a condition for when relative humidity changes make a larger contribution than the Clausius–Clapeyron response at fixed relative humidity. These conditions are used to interpret the θ E responses in transient warming simulations with an ensemble of models participating in phase 6 of the Climate Model Intercomparison Project. The regional pattern of θ E changes is shown to be largely determined by the pattern of specific humidity changes, with the pattern of temperature changes playing a secondary role. This holds whether considering changes in seasonal-mean θ E or in extreme (98th-percentile) θ E events, and uncertainty in the response of specific humidity to warming is shown to be the leading source of uncertainty in the θ E response at most land locations. Finally, analysis of ERA5 data demonstrates that the pattern of observed θ E changes is also well explained by the pattern of specific humidity changes. These results demonstrate that understanding regional changes in specific humidity is largely sufficient for understanding regional changes in heat stress.

Restricted access
Nicholas J. Lutsko

Abstract

An equatorial heat source mimicking the strong diabatic heating above the west Pacific is added to an idealized, dry general circulation model. For small (<0.5 K day−1) heating rates the responses closely match the expectations from linear Matsuno–Gill theory, though the amplitudes of the responses increase sublinearly. This “linear” regime breaks down for larger heating rates and it is found that this is because the stability of the tropical atmosphere increases. At the same time, the equatorial winds increasingly superrotate. This superrotation is driven by stationary eddy momentum fluxes by the waves excited by the heating and is damped by the vertical advection of low-momentum air by the mean flow and, at large heating rates, by the divergence of momentum by transient eddies.

These dynamics are explored in additional experiments in which the equator-to-pole temperature gradient is varied. Very strong superrotation is produced when a large heating rate is applied to a setup with a relatively weak equator-to-pole temperature gradient, though there is no evidence that this is a case of “runaway” superrotation.

Open access
Nicholas J. Lutsko

Abstract

The nonacceleration theorem states that the torque exerted on the atmosphere by orography is exactly balanced by the convergence of momentum by the stationary waves that the orography excites. This balance is tested in simulations with a stationary wave model and with a dry, idealized general circulation model (GCM), in which large-scale orography is placed at the latitude of maximum surface wind speed. For the smallest mountain considered (maximum height H = 0.5 m), the nonacceleration balance is nearly met, but the damping in the stationary wave model induces an offset between the stationary eddy momentum flux (EMF) convergence and the mountain torque, leading to residual mean flow changes. A stationary nonlinearity appears for larger mountains (H ≥ 10 m), driven by preferential deflection of the flow around the poleward flank of the orography, and causes further breakdown of the nonacceleration balance. The nonlinearity grows as H is increased, and is stronger in the GCM than in the stationary wave model, likely due to interactions with transient eddies. The midlatitude jet shifts poleward for H ≤ 2 km and equatorward for larger mountains, reflecting changes in the transient EMFs, which push the jet poleward for smaller mountains and equatorward for larger mountains. The stationary EMFs consistently force the jet poleward. These results add to our understanding of how orography affects the atmosphere’s momentum budget, providing insight into how the nonacceleration theorem breaks down; the roles of stationary nonlinearities and transients; and how orography affects the strength and latitude of eddy-driven jets.

Restricted access
Nicholas J. Lutsko and Ken Takahashi

Abstract

The relationship between climate models’ internal variability and their response to external forcings is investigated. Frequency-dependent regressions are performed between the outgoing top-of-atmosphere (TOA) energy fluxes and the global-mean surface temperature in the preindustrial control simulations of the CMIP5 archive. Two distinct regimes are found. At subdecadal frequencies the surface temperature and the outgoing shortwave flux are in quadrature, while the outgoing longwave flux is linearly related to temperature and acts as a negative feedback on temperature perturbations. On longer time scales the outgoing shortwave and longwave fluxes are both linearly related to temperature, with the longwave continuing to act as a negative feedback and the shortwave acting as a positive feedback on temperature variability. In addition to the different phase relationships, the two regimes can also be seen in estimates of the coherence and of the frequency-dependent regression coefficients. The frequency-dependent regression coefficients for the total cloudy-sky flux on time scales of 2.5 to 3 years are found to be strongly (r 2 > 0.6) related to the models’ equilibrium climate sensitivities (ECSs), suggesting a potential “emergent constraint” for Earth’s ECS. However, O(100) years of data are required for this relationship to become robust. A simple model for Earth’s surface temperature variability and its relationship to the TOA fluxes is used to provide a physical interpretation of these results.

Open access
Nicholas J. Lutsko and Max Popp

Abstract

The relative contributions of the meridional gradients in insolation and in longwave optical depth (caused by gradients in water vapor) to the equator-to-pole temperature difference, and to Earth’s climate in general, have not been quantified before. As a first step to understanding these contributions, this study investigates simulations with an idealized general circulation model in which the gradients are eliminated individually or jointly, while keeping the global means fixed. The insolation gradient has a larger influence on the model’s climate than the gradient in optical depth, but both make sizeable contributions and the changes are largest when the gradients are reduced simultaneously. Removing either gradient increases global-mean surface temperature due to an increase in the tropospheric lapse rate, while the meridional surface temperature gradients are reduced. “Global warming” experiments with these configurations suggest similar climate sensitivities; however, the warming patterns and feedbacks are quite different. Changes in the meridional energy fluxes lead to polar amplification of the response in all but the setup in which both gradients are removed. The lapse-rate feedback acts to polar amplify the responses in the Earth-like setup, but is uniformly negative in the other setups. Simple models are used to interpret the results, including a prognostic model that can accurately predict regional surface temperatures, given the meridional distributions of insolation and longwave optical depths.

Open access
Nicholas J. Lutsko and Isaac M. Held

Abstract

A dry atmospheric general circulation model is forced with large-scale, Gaussian orography in an attempt to isolate a regime in which the model responds linearly to orographic forcing and then to study the departures from linearity as the orography is increased in amplitude. In contrast to previous results, which emphasized the meridional propagation of orographically forced stationary waves, using the standard Held–Suarez (H–S) control climate, it is found that the linear regime is characterized by a meridionally trapped, zonally propagating wave. Meridionally trapped waves of this kind have been seen in other contexts, where they have been termed “circumglobal waves.” As the height of the orography is increased, the circumglobal wave coexists with a meridionally propagating wave and for large-enough heights the meridionally propagating wave dominates the response. A barotropic model on a sphere reproduces this trapped wave in the linear regime and also reproduces the transition to meridional propagation with increasing amplitude. However, mean-flow modification by the stationary waves is very different in the two models, making it difficult to argue that the transitions have the same causes. When adding asymmetry across the equator to the H–S control climate and placing the orography in the cooler hemisphere, it becomes harder to generate trapped waves in the GCM and the trapping becomes sensitive to the shape of the orography. The barotropic model overestimates the trapping in this case. These results suggest that an improved understanding of the role of circumglobal waves will be needed to understand the stationary wave field and its sensitivity to the changes in the zonal-mean climate.

Full access
Nicholas J. Lutsko, John Marshall, and Brian Green

Abstract

Motivated by observations of southward ocean heat transport (OHT) in the northern Indian Ocean during summer, the role of the ocean in modulating monsoon circulations is explored by coupling an atmospheric model to a slab ocean with an interactive representation of OHT and an idealized subtropical continent. Southward OHT by the cross-equatorial cells is caused by Ekman flow driven by southwesterly monsoon winds in the summer months, cooling sea surface temperatures (SSTs) south of the continent. This increases the reversed meridional surface gradient of moist static energy, shifting the precipitation maximum over the land and strengthening the monsoonal circulation, in the sense of enhancing the vertical wind shear. However, the atmosphere’s cross-equatorial meridional overturning circulation is also weakened by the presence of southward OHT, as the atmosphere is required to transport less energy across the equator. The sensitivity of these effects to varying the strength of the OHT, fixing the OHT at its annual-mean value, and to removing the land is explored. Comparisons with more realistic models suggest that the idealized model used in this study produces a reasonable representation of the effect of OHT on SSTs equatorward of subtropical continents, and hence can be used to study the role of OHT in shaping monsoon circulations on Earth.

Open access
Nicholas J. Lutsko, Jane Wilson Baldwin, and Timothy W. Cronin

Abstract

The impact of large-scale orography on wintertime near-surface (850 hPa) temperature variability on daily and synoptic time scales (from days to weeks) in the Northern Hemisphere is investigated. Using a combination of theory, idealized modeling work, and simulations with a comprehensive climate model, it is shown that large-scale orography reduces upstream temperature gradients, in turn reducing upstream temperature variability, and enhances downstream temperature gradients, enhancing downstream temperature variability. Hence, the presence of the Rockies on the western edge of the North American continent increases temperature gradients over North America and, consequently, increases North American temperature variability. By contrast, the presence of the Tibetan Plateau and the Himalayas on the eastern edge of the Eurasian continent damps temperature variability over most of Eurasia. However, Tibet and the Himalayas also interfere with the downstream development of storms in the North Pacific storm track, and thus damp temperature variability over North America, by approximately as much as the Rockies enhance it. Large-scale orography is also shown to impact the skewness of downstream temperature distributions, as temperatures to the north of the enhanced temperature gradients are more positively skewed while temperatures to the south are more negatively skewed. This effect is most clearly seen in the northwest Pacific, off the east coast of Japan.

Open access
Nicholas J. Lutsko, Isaac M. Held, and Pablo Zurita-Gotor

Abstract

The fluctuation–dissipation theorem (FDT) provides a means of calculating the response of a dynamical system to a small force by constructing a linear operator that depends only on data from the internal variability of the unperturbed system. Here the FDT is used to estimate the response of a two-layer quasigeostrophic model to two zonally symmetric torques, both barotropic, with the same sign of the forcing in the two layers, and baroclinic, with opposite sign forcing in the two layers. The supercriticality of the model is also varied to test how the FDT fares, as this parameter is varied. To perform the FDT calculations the data are decomposed onto empirical orthogonal functions (EOFs) and only those EOFs that are well resolved are retained in the FDT calculations. In the barotropic case good qualitative estimates are obtained for all values of the supercriticality, though the FDT consistently overestimates the response, perhaps because of significant non-Gaussian behavior present in the model. Nevertheless, this adds to the evidence that the annular-mode time scale plays an important role in determining the response of the midlatitudes to small perturbations. The baroclinic case is more challenging for the FDT. However, by constructing different bases with which to calculate the EOFs, it is shown that the issue in this case is that the baroclinic variability is poorly sampled, not that the FDT fails. The strategies developed in order to generate these estimates may be applicable to situations in which the FDT is applied to larger systems.

Full access
Matthew Henry, Timothy M. Merlis, Nicholas J. Lutsko, and Brian E. J. Rose

Abstract

The precise mechanisms driving Arctic amplification are still under debate. Previous attribution methods compute the vertically uniform temperature change required to balance the top-of-atmosphere energy imbalance caused by each forcing and feedback, with any departures from vertically uniform warming collected into the lapse-rate feedback. We propose an alternative attribution method using a single-column model that accounts for the forcing dependence of high-latitude lapse-rate changes. We examine this method in an idealized general circulation model (GCM), finding that, even though the column-integrated carbon dioxide (CO2) forcing and water vapor feedback are stronger in the tropics, they contribute to polar-amplified surface warming as they produce bottom-heavy warming in high latitudes. A separation of atmospheric temperature changes into local and remote contributors shows that, in the absence of polar surface forcing (e.g., sea ice retreat), changes in energy transport are primarily responsible for the polar-amplified pattern of warming. The addition of surface forcing substantially increases polar surface warming and reduces the contribution of atmospheric dry static energy transport to the warming. This physically based attribution method can be applied to comprehensive GCMs to provide a clearer view of the mechanisms behind Arctic amplification.

Restricted access