Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: Nick Hardman-Mountford x
- Refine by Access: All Content x
Abstract
Development of autonomous profiling floats, allowing for long-term continuous measurement of bio-optical variables, promises to significantly increase our knowledge of the variability of the particulate optical backscattering coefficient b bp in marine environments. However, because autonomous floats are designed for unattended data collection and only rarely are recovered for analysis of the condition of the sensors in situ, the quality-control analysis of float data streams is of paramount importance in both a particular dataset and the larger understanding of the response of sensors over the lifetime of the floats. Anomalous data from a backscattering sensor (MCOMS) mounted on autonomous profiling floats are reported here. The observed sensor behavior, which presents itself as significant differences in the values observed at the parking depth between profiles, caused by a steady increase in the signal during the profiling time, is neither common to all sensors nor can it be a function of changes in the particle population. A simple quality-control procedure that is able to detect this spurious sensor response is proposed. Further characterization of this effect will require laboratory experimentation under controlled conditions of temperature and pressure.
Abstract
Development of autonomous profiling floats, allowing for long-term continuous measurement of bio-optical variables, promises to significantly increase our knowledge of the variability of the particulate optical backscattering coefficient b bp in marine environments. However, because autonomous floats are designed for unattended data collection and only rarely are recovered for analysis of the condition of the sensors in situ, the quality-control analysis of float data streams is of paramount importance in both a particular dataset and the larger understanding of the response of sensors over the lifetime of the floats. Anomalous data from a backscattering sensor (MCOMS) mounted on autonomous profiling floats are reported here. The observed sensor behavior, which presents itself as significant differences in the values observed at the parking depth between profiles, caused by a steady increase in the signal during the profiling time, is neither common to all sensors nor can it be a function of changes in the particle population. A simple quality-control procedure that is able to detect this spurious sensor response is proposed. Further characterization of this effect will require laboratory experimentation under controlled conditions of temperature and pressure.
As part of the U.K. contribution to the international Surface Ocean-Lower Atmosphere Study, a series of three related projects—DOGEE, SEASAW, and HiWASE—undertook experimental studies of the processes controlling the physical exchange of gases and sea spray aerosol at the sea surface. The studies share a common goal: to reduce the high degree of uncertainty in current parameterization schemes. The wide variety of measurements made during the studies, which incorporated tracer and surfactant release experiments, included direct eddy correlation fluxes, detailed wave spectra, wind history, photographic retrievals of whitecap fraction, aerosolsize spectra and composition, surfactant concentration, and bubble populations in the ocean mixed layer. Measurements were made during three cruises in the northeast Atlantic on the RRS Discovery during 2006 and 2007; a fourth campaign has been making continuous measurements on the Norwegian weather ship Polarfront since September 2006. This paper provides an overview of the three projects and some of the highlights of the measurement campaigns.
As part of the U.K. contribution to the international Surface Ocean-Lower Atmosphere Study, a series of three related projects—DOGEE, SEASAW, and HiWASE—undertook experimental studies of the processes controlling the physical exchange of gases and sea spray aerosol at the sea surface. The studies share a common goal: to reduce the high degree of uncertainty in current parameterization schemes. The wide variety of measurements made during the studies, which incorporated tracer and surfactant release experiments, included direct eddy correlation fluxes, detailed wave spectra, wind history, photographic retrievals of whitecap fraction, aerosolsize spectra and composition, surfactant concentration, and bubble populations in the ocean mixed layer. Measurements were made during three cruises in the northeast Atlantic on the RRS Discovery during 2006 and 2007; a fourth campaign has been making continuous measurements on the Norwegian weather ship Polarfront since September 2006. This paper provides an overview of the three projects and some of the highlights of the measurement campaigns.
Abstract
No Abstract available.
Abstract
No Abstract available.