Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Nick Shay x
  • Refine by Access: All Content x
Clear All Modify Search
Robert Rogers
,
Sim Aberson
,
Michael Black
,
Peter Black
,
Joe Cione
,
Peter Dodge
,
Jason Dunion
,
John Gamache
,
John Kaplan
,
Mark Powell
,
Nick Shay
,
Naomi Surgi
, and
Eric Uhlhorn

In 2005, NOAA's Hurricane Research Division (HRD), part of the Atlantic Oceanographic and Meteorological Laboratory, began a multiyear experiment called the Intensity Forecasting Experiment (IFEX). By emphasizing a partnership among NOAA's HRD, Environmental Modeling Center (EMC), National Hurricane Center (NHC), Aircraft Operations Center (AOC), and National Environmental Satellite Data Information Service (NESDIS), IFEX represents a new approach for conducting hurricane field program operations. IFEX is intended to improve the prediction of tropical cyclone (TC) intensity change by 1) collecting observations that span the TC life cycle in a variety of environments; 2) developing and refining measurement technologies that provide improved real-time monitoring of TC intensity, structure, and environment; and 3) improving the understanding of the physical processes important in intensity change for a TC at all stages of its life cycle.

This paper presents a summary of the accomplishments of IFEX during the 2005 hurricane season. New and refined technologies for measuring such fields as surface and three-dimensional wind fields, and the use of unmanned aerial vehicles, were achieved in a variety of field experiments that spanned the life cycle of several tropical cyclones, from formation and early organization to peak intensity and subsequent landfall or extratropical transition. Partnerships with other experiments during 2005 also expanded the spatial and temporal coverage of the data collected in 2005. A brief discussion of the plans for IFEX in 2006 is also provided.

Full access
Diana Greenslade
,
Mark Hemer
,
Alex Babanin
,
Ryan Lowe
,
Ian Turner
,
Hannah Power
,
Ian Young
,
Daniel Ierodiaconou
,
Greg Hibbert
,
Greg Williams
,
Saima Aijaz
,
João Albuquerque
,
Stewart Allen
,
Michael Banner
,
Paul Branson
,
Steve Buchan
,
Andrew Burton
,
John Bye
,
Nick Cartwright
,
Amin Chabchoub
,
Frank Colberg
,
Stephanie Contardo
,
Francois Dufois
,
Craig Earl-Spurr
,
David Farr
,
Ian Goodwin
,
Jim Gunson
,
Jeff Hansen
,
David Hanslow
,
Mitchell Harley
,
Yasha Hetzel
,
Ron Hoeke
,
Nicole Jones
,
Michael Kinsela
,
Qingxiang Liu
,
Oleg Makarynskyy
,
Hayden Marcollo
,
Said Mazaheri
,
Jason McConochie
,
Grant Millar
,
Tim Moltmann
,
Neal Moodie
,
Joao Morim
,
Russel Morison
,
Jana Orszaghova
,
Charitha Pattiaratchi
,
Andrew Pomeroy
,
Roger Proctor
,
David Provis
,
Ruth Reef
,
Dirk Rijnsdorp
,
Martin Rutherford
,
Eric Schulz
,
Jake Shayer
,
Kristen Splinter
,
Craig Steinberg
,
Darrell Strauss
,
Greg Stuart
,
Graham Symonds
,
Karina Tarbath
,
Daniel Taylor
,
James Taylor
,
Darshani Thotagamuwage
,
Alessandro Toffoli
,
Alireza Valizadeh
,
Jonathan van Hazel
,
Guilherme Vieira da Silva
,
Moritz Wandres
,
Colin Whittaker
,
David Williams
,
Gundula Winter
,
Jiangtao Xu
,
Aihong Zhong
, and
Stefan Zieger
Full access
Diana Greenslade
,
Mark Hemer
,
Alex Babanin
,
Ryan Lowe
,
Ian Turner
,
Hannah Power
,
Ian Young
,
Daniel Ierodiaconou
,
Greg Hibbert
,
Greg Williams
,
Saima Aijaz
,
João Albuquerque
,
Stewart Allen
,
Michael Banner
,
Paul Branson
,
Steve Buchan
,
Andrew Burton
,
John Bye
,
Nick Cartwright
,
Amin Chabchoub
,
Frank Colberg
,
Stephanie Contardo
,
Francois Dufois
,
Craig Earl-Spurr
,
David Farr
,
Ian Goodwin
,
Jim Gunson
,
Jeff Hansen
,
David Hanslow
,
Mitchell Harley
,
Yasha Hetzel
,
Ron Hoeke
,
Nicole Jones
,
Michael Kinsela
,
Qingxiang Liu
,
Oleg Makarynskyy
,
Hayden Marcollo
,
Said Mazaheri
,
Jason McConochie
,
Grant Millar
,
Tim Moltmann
,
Neal Moodie
,
Joao Morim
,
Russel Morison
,
Jana Orszaghova
,
Charitha Pattiaratchi
,
Andrew Pomeroy
,
Roger Proctor
,
David Provis
,
Ruth Reef
,
Dirk Rijnsdorp
,
Martin Rutherford
,
Eric Schulz
,
Jake Shayer
,
Kristen Splinter
,
Craig Steinberg
,
Darrell Strauss
,
Greg Stuart
,
Graham Symonds
,
Karina Tarbath
,
Daniel Taylor
,
James Taylor
,
Darshani Thotagamuwage
,
Alessandro Toffoli
,
Alireza Valizadeh
,
Jonathan van Hazel
,
Guilherme Vieira da Silva
,
Moritz Wandres
,
Colin Whittaker
,
David Williams
,
Gundula Winter
,
Jiangtao Xu
,
Aihong Zhong
, and
Stefan Zieger

Abstract

The Australian marine research, industry, and stakeholder community has recently undertaken an extensive collaborative process to identify the highest national priorities for wind-waves research. This was undertaken under the auspices of the Forum for Operational Oceanography Surface Waves Working Group. The main steps in the process were first, soliciting possible research questions from the community via an online survey; second, reviewing the questions at a face-to-face workshop; and third, online ranking of the research questions by individuals. This process resulted in 15 identified priorities, covering research activities and the development of infrastructure. The top five priorities are 1) enhanced and updated nearshore and coastal bathymetry; 2) improved understanding of extreme sea states; 3) maintain and enhance the in situ buoy network; 4) improved data access and sharing; and 5) ensemble and probabilistic wave modeling and forecasting. In this paper, each of the 15 priorities is discussed in detail, providing insight into why each priority is important, and the current state of the art, both nationally and internationally, where relevant. While this process has been driven by Australian needs, it is likely that the results will be relevant to other marine-focused nations.

Free access