Search Results
You are looking at 1 - 10 of 16 items for
- Author or Editor: Nigel M. Roberts x
- Refine by Access: All Content x
Abstract
The development of NWP models with grid spacing down to ∼1 km should produce more realistic forecasts of convective storms. However, greater realism does not necessarily mean more accurate precipitation forecasts. The rapid growth of errors on small scales in conjunction with preexisting errors on larger scales may limit the usefulness of such models. The purpose of this paper is to examine whether improved model resolution alone is able to produce more skillful precipitation forecasts on useful scales, and how the skill varies with spatial scale. A verification method will be described in which skill is determined from a comparison of rainfall forecasts with radar using fractional coverage over different sized areas. The Met Office Unified Model was run with grid spacings of 12, 4, and 1 km for 10 days in which convection occurred during the summers of 2003 and 2004. All forecasts were run from 12-km initial states for a clean comparison. The results show that the 1-km model was the most skillful over all but the smallest scales (approximately <10–15 km). A measure of acceptable skill was defined; this was attained by the 1-km model at scales around 40–70 km, some 10–20 km less than that of the 12-km model. The biggest improvement occurred for heavier, more localized rain, despite it being more difficult to predict. The 4-km model did not improve much on the 12-km model because of the difficulties of representing convection at that resolution, which was accentuated by the spinup from 12-km fields.
Abstract
The development of NWP models with grid spacing down to ∼1 km should produce more realistic forecasts of convective storms. However, greater realism does not necessarily mean more accurate precipitation forecasts. The rapid growth of errors on small scales in conjunction with preexisting errors on larger scales may limit the usefulness of such models. The purpose of this paper is to examine whether improved model resolution alone is able to produce more skillful precipitation forecasts on useful scales, and how the skill varies with spatial scale. A verification method will be described in which skill is determined from a comparison of rainfall forecasts with radar using fractional coverage over different sized areas. The Met Office Unified Model was run with grid spacings of 12, 4, and 1 km for 10 days in which convection occurred during the summers of 2003 and 2004. All forecasts were run from 12-km initial states for a clean comparison. The results show that the 1-km model was the most skillful over all but the smallest scales (approximately <10–15 km). A measure of acceptable skill was defined; this was attained by the 1-km model at scales around 40–70 km, some 10–20 km less than that of the 12-km model. The biggest improvement occurred for heavier, more localized rain, despite it being more difficult to predict. The 4-km model did not improve much on the 12-km model because of the difficulties of representing convection at that resolution, which was accentuated by the spinup from 12-km fields.
Abstract
With movement toward kilometer-scale ensembles, new techniques are needed for their characterization. A new methodology is presented for detailed spatial ensemble characterization using the fractions skill score (FSS). To evaluate spatial forecast differences, the average and standard deviation are taken of the FSS calculated over all ensemble member–member pairs at different scales and lead times. These methods were found to give important information about the ensemble behavior allowing the identification of useful spatial scales, spinup times for the model, and upscale growth of errors and forecast differences. The ensemble spread was found to be highly dependent on the spatial scales considered and the threshold applied to the field. High thresholds picked out localized and intense values that gave large temporal variability in ensemble spread: local processes and undersampling dominate for these thresholds. For lower thresholds the ensemble spread increases with time as differences between the ensemble members upscale. Two convective cases were investigated based on the Met Office United Model run at 2.2-km resolution. Different ensemble types were considered: ensembles produced using the Met Office Global and Regional Ensemble Prediction System (MOGREPS) and an ensemble produced using different model physics configurations. Comparison of the MOGREPS and multiphysics ensembles demonstrated the utility of spatial ensemble evaluation techniques for assessing the impact of different perturbation strategies and the need for assessing spread at different, believable, spatial scales.
Abstract
With movement toward kilometer-scale ensembles, new techniques are needed for their characterization. A new methodology is presented for detailed spatial ensemble characterization using the fractions skill score (FSS). To evaluate spatial forecast differences, the average and standard deviation are taken of the FSS calculated over all ensemble member–member pairs at different scales and lead times. These methods were found to give important information about the ensemble behavior allowing the identification of useful spatial scales, spinup times for the model, and upscale growth of errors and forecast differences. The ensemble spread was found to be highly dependent on the spatial scales considered and the threshold applied to the field. High thresholds picked out localized and intense values that gave large temporal variability in ensemble spread: local processes and undersampling dominate for these thresholds. For lower thresholds the ensemble spread increases with time as differences between the ensemble members upscale. Two convective cases were investigated based on the Met Office United Model run at 2.2-km resolution. Different ensemble types were considered: ensembles produced using the Met Office Global and Regional Ensemble Prediction System (MOGREPS) and an ensemble produced using different model physics configurations. Comparison of the MOGREPS and multiphysics ensembles demonstrated the utility of spatial ensemble evaluation techniques for assessing the impact of different perturbation strategies and the need for assessing spread at different, believable, spatial scales.
Abstract
The realistic representation of rainfall on the local scale in climate models remains a key challenge. Realism encompasses the full spatial and temporal structure of rainfall, and is a key indicator of model skill in representing the underlying processes. In particular, if rainfall is more realistic in a climate model, there is greater confidence in its projections of future change.
In this study, the realism of rainfall in a very high-resolution (1.5 km) regional climate model (RCM) is compared to a coarser-resolution 12-km RCM. This is the first time a convection-permitting model has been run for an extended period (1989–2008) over a region of the United Kingdom, allowing the characteristics of rainfall to be evaluated in a climatological sense. In particular, the duration and spatial extent of hourly rainfall across the southern United Kingdom is examined, with a key focus on heavy rainfall.
Rainfall in the 1.5-km RCM is found to be much more realistic than in the 12-km RCM. In the 12-km RCM, heavy rain events are not heavy enough, and tend to be too persistent and widespread. While the 1.5-km model does have a tendency for heavy rain to be too intense, it still gives a much better representation of its duration and spatial extent. Long-standing problems in climate models, such as the tendency for too much persistent light rain and errors in the diurnal cycle, are also considerably reduced in the 1.5-km RCM. Biases in the 12-km RCM appear to be linked to deficiencies in the representation of convection.
Abstract
The realistic representation of rainfall on the local scale in climate models remains a key challenge. Realism encompasses the full spatial and temporal structure of rainfall, and is a key indicator of model skill in representing the underlying processes. In particular, if rainfall is more realistic in a climate model, there is greater confidence in its projections of future change.
In this study, the realism of rainfall in a very high-resolution (1.5 km) regional climate model (RCM) is compared to a coarser-resolution 12-km RCM. This is the first time a convection-permitting model has been run for an extended period (1989–2008) over a region of the United Kingdom, allowing the characteristics of rainfall to be evaluated in a climatological sense. In particular, the duration and spatial extent of hourly rainfall across the southern United Kingdom is examined, with a key focus on heavy rainfall.
Rainfall in the 1.5-km RCM is found to be much more realistic than in the 12-km RCM. In the 12-km RCM, heavy rain events are not heavy enough, and tend to be too persistent and widespread. While the 1.5-km model does have a tendency for heavy rain to be too intense, it still gives a much better representation of its duration and spatial extent. Long-standing problems in climate models, such as the tendency for too much persistent light rain and errors in the diurnal cycle, are also considerably reduced in the 1.5-km RCM. Biases in the 12-km RCM appear to be linked to deficiencies in the representation of convection.
Abstract
The statistical properties and skill in predictions of objectively identified and tracked cyclonic features (frontal waves and cyclones) are examined in the 15-day version of the Met Office Global and Regional Ensemble Prediction System (MOGREPS-15). The number density of cyclonic features is found to decline with increasing lead time, with analysis fields containing weak features that are not sustained past the first day of the forecast. This loss of cyclonic features is associated with a decline in area-averaged enstrophy with increasing lead time. Both feature number density and area-averaged enstrophy saturate by around 7 days into the forecast. It is found that the feature number density and area-averaged enstrophy of forecasts produced using model versions that include stochastic energy backscatter saturate at higher values than forecasts produced without stochastic physics. The ability of MOGREPS-15 to predict the locations of cyclonic features of different strengths is evaluated at different spatial scales by examining the Brier skill (relative to the analysis climatology) of strike probability forecasts: the probability that a cyclonic feature center is located within a specified radius. The radius at which skill is maximized increases with lead time from 650 km at 12 h to 950 km at 7 days. The skill is greatest for the most intense features. Forecast skill remains above zero at these scales out to 14 days for the most intense cyclonic features, but only out to 8 days when all features are included irrespective of intensity.
Abstract
The statistical properties and skill in predictions of objectively identified and tracked cyclonic features (frontal waves and cyclones) are examined in the 15-day version of the Met Office Global and Regional Ensemble Prediction System (MOGREPS-15). The number density of cyclonic features is found to decline with increasing lead time, with analysis fields containing weak features that are not sustained past the first day of the forecast. This loss of cyclonic features is associated with a decline in area-averaged enstrophy with increasing lead time. Both feature number density and area-averaged enstrophy saturate by around 7 days into the forecast. It is found that the feature number density and area-averaged enstrophy of forecasts produced using model versions that include stochastic energy backscatter saturate at higher values than forecasts produced without stochastic physics. The ability of MOGREPS-15 to predict the locations of cyclonic features of different strengths is evaluated at different spatial scales by examining the Brier skill (relative to the analysis climatology) of strike probability forecasts: the probability that a cyclonic feature center is located within a specified radius. The radius at which skill is maximized increases with lead time from 650 km at 12 h to 950 km at 7 days. The skill is greatest for the most intense features. Forecast skill remains above zero at these scales out to 14 days for the most intense cyclonic features, but only out to 8 days when all features are included irrespective of intensity.
Abstract
In this second part of a two-part study of recursive filter techniques applied to the synthesis of covariances in a variational analysis, methods by which non-Gaussian shapes and spatial inhomogeneities and anisotropies for the covariances may be introduced in a well-controlled way are examined. These methods permit an analysis scheme to possess covariance structures with adaptive variations of amplitude, scale, profile shape, and degrees of local anisotropy, all as functions of geographical location and altitude.
First, it is shown how a wider and more useful variety of covariance shapes than just the Gaussian may be obtained by the positive superposition of Gaussian components of different scales, or by further combinations of these operators with the application of Laplacian operators in order for the products to possess negative sidelobes in their radial profiles.
Then it is shown how the techniques of recursive filters may be generalized to admit the construction of covariances whose characteristic scales relative to the grid become adaptive to geographical location, while preserving the necessary properties of self-adjointness and positivity. Special attention is paid to the problems of amplitude control for these spatially inhomogeneous filters and an estimate for the kernel amplitude is proposed based upon an asymptotic analysis of the problem.
Finally, a further generalization of the filters that enables fully anisotropic and geographically adaptive covariances to be constructed in a computationally efficient way is discussed.
Abstract
In this second part of a two-part study of recursive filter techniques applied to the synthesis of covariances in a variational analysis, methods by which non-Gaussian shapes and spatial inhomogeneities and anisotropies for the covariances may be introduced in a well-controlled way are examined. These methods permit an analysis scheme to possess covariance structures with adaptive variations of amplitude, scale, profile shape, and degrees of local anisotropy, all as functions of geographical location and altitude.
First, it is shown how a wider and more useful variety of covariance shapes than just the Gaussian may be obtained by the positive superposition of Gaussian components of different scales, or by further combinations of these operators with the application of Laplacian operators in order for the products to possess negative sidelobes in their radial profiles.
Then it is shown how the techniques of recursive filters may be generalized to admit the construction of covariances whose characteristic scales relative to the grid become adaptive to geographical location, while preserving the necessary properties of self-adjointness and positivity. Special attention is paid to the problems of amplitude control for these spatially inhomogeneous filters and an estimate for the kernel amplitude is proposed based upon an asymptotic analysis of the problem.
Finally, a further generalization of the filters that enables fully anisotropic and geographically adaptive covariances to be constructed in a computationally efficient way is discussed.
Abstract
Many factors, both mesoscale and larger scale, often come together in order for a particular convective initiation to take place. The authors describe a modeling study of a case from the Convective Storms Initiation Project (CSIP) in which a single thunderstorm formed behind a front in the southern United Kingdom. The key features of the case were a tongue of low-level high θw air associated with a forward-sloping split front (overrunning lower θw air above), a convergence line, and a “lid” of high static stability air, which the shower was initially constrained below but later broke through. In this paper, the authors analyze the initiation of the storm, which can be traced back to a region of high ground (Dartmoor) at around 0700 UTC, in more detail using model sensitivity studies with the Met Office Unified Model (MetUM). It is established that the convergence line was initially caused by roughness effects but had a significant thermal component later. Dartmoor had a key role in the development of the thunderstorm. A period of asymmetric flow over the high ground, with stronger low-level descent in the lee, led to a hole in a layer of low-level clouds downstream. The surface solar heating through this hole, in combination with the tongue of low-level high θw air associated with the front, caused the shower to initiate with sufficient lifting to enable it later to break through the lid.
Abstract
Many factors, both mesoscale and larger scale, often come together in order for a particular convective initiation to take place. The authors describe a modeling study of a case from the Convective Storms Initiation Project (CSIP) in which a single thunderstorm formed behind a front in the southern United Kingdom. The key features of the case were a tongue of low-level high θw air associated with a forward-sloping split front (overrunning lower θw air above), a convergence line, and a “lid” of high static stability air, which the shower was initially constrained below but later broke through. In this paper, the authors analyze the initiation of the storm, which can be traced back to a region of high ground (Dartmoor) at around 0700 UTC, in more detail using model sensitivity studies with the Met Office Unified Model (MetUM). It is established that the convergence line was initially caused by roughness effects but had a significant thermal component later. Dartmoor had a key role in the development of the thunderstorm. A period of asymmetric flow over the high ground, with stronger low-level descent in the lee, led to a hole in a layer of low-level clouds downstream. The surface solar heating through this hole, in combination with the tongue of low-level high θw air associated with the front, caused the shower to initiate with sufficient lifting to enable it later to break through the lid.
Abstract
The construction and application of efficient numerical recursive filters for the task of convolving a spatial distribution of “forcing” terms with a quasi-Gaussian self-adjoint smoothing kernel in two or three dimensions are described. In the context of variational analysis, this smoothing operation may be interpreted as the convolution of a covariance function of background error with the given forcing terms, which constitutes one of the most computationally intensive components of the iterative solution of a variational analysis problem.
Among the technical aspects of the recursive filters, the problems of achieving acceptable approximations to horizontal isotropy and the implementation of both periodic and nonperiodic boundary conditions that avoid the appearance of spurious numerical artifacts are treated herein. A multigrid approach that helps to minimize numerical noise at filtering scales greatly in excess of the grid step is also discussed. It is emphasized that the methods are not inherently limited to the construction of purely Gaussian shapes, although the detailed elaboration of methods by which a more general set of possible covariance profiles may be synthesized is deferred to the companion paper ().
Abstract
The construction and application of efficient numerical recursive filters for the task of convolving a spatial distribution of “forcing” terms with a quasi-Gaussian self-adjoint smoothing kernel in two or three dimensions are described. In the context of variational analysis, this smoothing operation may be interpreted as the convolution of a covariance function of background error with the given forcing terms, which constitutes one of the most computationally intensive components of the iterative solution of a variational analysis problem.
Among the technical aspects of the recursive filters, the problems of achieving acceptable approximations to horizontal isotropy and the implementation of both periodic and nonperiodic boundary conditions that avoid the appearance of spurious numerical artifacts are treated herein. A multigrid approach that helps to minimize numerical noise at filtering scales greatly in excess of the grid step is also discussed. It is emphasized that the methods are not inherently limited to the construction of purely Gaussian shapes, although the detailed elaboration of methods by which a more general set of possible covariance profiles may be synthesized is deferred to the companion paper ().
Abstract
This study examines convection-permitting numerical simulations of four cases of terrain-locked quasi-stationary convective bands over the United Kingdom. For each case, a 2.2-km-grid-length, 12-member ensemble and a 1.5-km-grid-length deterministic forecast are analyzed, each with two different initialization times. Object-based verification is applied to determine whether the simulations capture the structure, location, timing, intensity, and duration of the observed precipitation. These verification diagnostics reveal that the forecast skill varies greatly between the four cases. Although the deterministic and ensemble simulations captured some aspects of the precipitation correctly in each case, they never simultaneously captured all of them satisfactorily. In general, the models predicted banded precipitation accumulations at approximately the correct time and location, but the precipitating structures were more cellular and less persistent than the coherent quasi-stationary bands that were observed. Ensemble simulations from the two different initialization times were not significantly different, which suggests a potential benefit of time-lagging subsequent ensembles to increase ensemble size. The predictive skill of the upstream larger-scale flow conditions and the simulated precipitation on the convection-permitting grids were strongly correlated, which suggests that more accurate forecasts from the parent ensemble should improve the performance of the convection-permitting ensemble nested within it.
Abstract
This study examines convection-permitting numerical simulations of four cases of terrain-locked quasi-stationary convective bands over the United Kingdom. For each case, a 2.2-km-grid-length, 12-member ensemble and a 1.5-km-grid-length deterministic forecast are analyzed, each with two different initialization times. Object-based verification is applied to determine whether the simulations capture the structure, location, timing, intensity, and duration of the observed precipitation. These verification diagnostics reveal that the forecast skill varies greatly between the four cases. Although the deterministic and ensemble simulations captured some aspects of the precipitation correctly in each case, they never simultaneously captured all of them satisfactorily. In general, the models predicted banded precipitation accumulations at approximately the correct time and location, but the precipitating structures were more cellular and less persistent than the coherent quasi-stationary bands that were observed. Ensemble simulations from the two different initialization times were not significantly different, which suggests a potential benefit of time-lagging subsequent ensembles to increase ensemble size. The predictive skill of the upstream larger-scale flow conditions and the simulated precipitation on the convection-permitting grids were strongly correlated, which suggests that more accurate forecasts from the parent ensemble should improve the performance of the convection-permitting ensemble nested within it.
Abstract
Regional climate projections are used in a wide range of impact studies, from assessing future flood risk to climate change impacts on food and energy production. These model projections are typically at 12–50-km resolution, providing valuable regional detail but with inherent limitations, in part because of the need to parameterize convection. The first climate change experiments at convection-permitting resolution (kilometer-scale grid spacing) are now available for the United Kingdom; the Alps; Germany; Sydney, Australia; and the western United States. These models give a more realistic representation of convection and are better able to simulate hourly precipitation characteristics that are poorly represented in coarser-resolution climate models. Here we examine these new experiments to determine whether future midlatitude precipitation projections are robust from coarse to higher resolutions, with implications also for the tropics. We find that the explicit representation of the convective storms themselves, only possible in convection-permitting models, is necessary for capturing changes in the intensity and duration of summertime rain on daily and shorter time scales. Other aspects of rainfall change, including changes in seasonal mean precipitation and event occurrence, appear robust across resolutions, and therefore coarse-resolution regional climate models are likely to provide reliable future projections, provided that large-scale changes from the global climate model are reliable. The improved representation of convective storms also has implications for projections of wind, hail, fog, and lightning. We identify a number of impact areas, especially flooding, but also transport and wind energy, for which very high-resolution models may be needed for reliable future assessments.
Abstract
Regional climate projections are used in a wide range of impact studies, from assessing future flood risk to climate change impacts on food and energy production. These model projections are typically at 12–50-km resolution, providing valuable regional detail but with inherent limitations, in part because of the need to parameterize convection. The first climate change experiments at convection-permitting resolution (kilometer-scale grid spacing) are now available for the United Kingdom; the Alps; Germany; Sydney, Australia; and the western United States. These models give a more realistic representation of convection and are better able to simulate hourly precipitation characteristics that are poorly represented in coarser-resolution climate models. Here we examine these new experiments to determine whether future midlatitude precipitation projections are robust from coarse to higher resolutions, with implications also for the tropics. We find that the explicit representation of the convective storms themselves, only possible in convection-permitting models, is necessary for capturing changes in the intensity and duration of summertime rain on daily and shorter time scales. Other aspects of rainfall change, including changes in seasonal mean precipitation and event occurrence, appear robust across resolutions, and therefore coarse-resolution regional climate models are likely to provide reliable future projections, provided that large-scale changes from the global climate model are reliable. The improved representation of convective storms also has implications for projections of wind, hail, fog, and lightning. We identify a number of impact areas, especially flooding, but also transport and wind energy, for which very high-resolution models may be needed for reliable future assessments.
Abstract
With many operational centers moving toward order 1-km-gridlength models for routine weather forecasting, this paper presents a systematic investigation of the properties of high-resolution versions of the Met Office Unified Model for short-range forecasting of convective rainfall events. The authors describe a suite of configurations of the Met Office Unified Model running with grid lengths of 12, 4, and 1 km and analyze results from these models for a number of convective cases from the summers of 2003, 2004, and 2005. The analysis includes subjective evaluation of the rainfall fields and comparisons of rainfall amounts, initiation, cell statistics, and a scale-selective verification technique. It is shown that the 4- and 1-km-gridlength models often give more realistic-looking precipitation fields because convection is represented explicitly rather than parameterized. However, the 4-km model representation suffers from large convective cells and delayed initiation because the grid length is too long to correctly reproduce the convection explicitly. These problems are not as evident in the 1-km model, although it does suffer from too numerous small cells in some situations. Both the 4- and 1-km models suffer from poor representation at the start of the forecast in the period when the high-resolution detail is spinning up from the lower-resolution (12 km) starting data used. A scale-selective precipitation verification technique implies that for later times in the forecasts (after the spinup period) the 1-km model performs better than the 12- and 4-km models for lower rainfall thresholds. For higher thresholds the 4-km model scores almost as well as the 1-km model, and both do better than the 12-km model.
Abstract
With many operational centers moving toward order 1-km-gridlength models for routine weather forecasting, this paper presents a systematic investigation of the properties of high-resolution versions of the Met Office Unified Model for short-range forecasting of convective rainfall events. The authors describe a suite of configurations of the Met Office Unified Model running with grid lengths of 12, 4, and 1 km and analyze results from these models for a number of convective cases from the summers of 2003, 2004, and 2005. The analysis includes subjective evaluation of the rainfall fields and comparisons of rainfall amounts, initiation, cell statistics, and a scale-selective verification technique. It is shown that the 4- and 1-km-gridlength models often give more realistic-looking precipitation fields because convection is represented explicitly rather than parameterized. However, the 4-km model representation suffers from large convective cells and delayed initiation because the grid length is too long to correctly reproduce the convection explicitly. These problems are not as evident in the 1-km model, although it does suffer from too numerous small cells in some situations. Both the 4- and 1-km models suffer from poor representation at the start of the forecast in the period when the high-resolution detail is spinning up from the lower-resolution (12 km) starting data used. A scale-selective precipitation verification technique implies that for later times in the forecasts (after the spinup period) the 1-km model performs better than the 12- and 4-km models for lower rainfall thresholds. For higher thresholds the 4-km model scores almost as well as the 1-km model, and both do better than the 12-km model.