Search Results

You are looking at 1 - 10 of 18 items for

  • Author or Editor: Ning Zhang x
  • Refine by Access: All Content x
Clear All Modify Search
Ning Zhang
and
Yan Chen

Abstract

The urban heat island (UHI) effect is one of the most significant phenomena caused by urbanization. This study investigated the UHI effect in the Suzhou–Wuxi area, China, on 19–20 August 2010. Using a combination of meteorological station observations and Moderate Resolution Imaging Spectroradiometer (MODIS) surface skin temperature observations, this study demonstrated that an upwind UHI had an exacerbating influence on the downwind UHI during the study period. Numerical simulations using the Weather Research and Forecasting model also proved the importance of an upwind UHI influence on the leeward UHI in this area. For the near-surface UHI, the windward UHI effect is stronger at night than during the daytime because the background atmospheric stratification is more stable and the local lake breeze is weaker at night. However, in the daytime, a greater stability formed over the downwind city because of the warmer air heated by the windward urban area in the upper part of the planetary boundary layer and the cooler air transported from Tai Lake and the rural area in the lower part of the boundary layer. In comparison with the heating effect of a single city, the upwind UHI led to a decrease in the vertical wind speed of approximately 30% (from 0.15 to 0.10 m s−1) in the upper boundary layer over the downwind city and also reduced the near-surface turbulent movement by 25% (from 0.73 to 0.55 m2 s−2). These results improve the understanding of the overall influence of urban clusters on local synoptic/climate processes.

Full access
Yan Chen
and
Ning Zhang

Abstract

Cool roofs and green roofs are two important methods used to mitigate the urban heat island (UHI) effect. The Weather Research and Forecasting Model was used to investigate the UHI effect and the effectiveness of cool and green roof mitigation strategies in the Suzhou–Wuxi–Changzhou metropolitan area during an extreme heat wave episode in the summer of 2013. Both urban land-cover change and anthropogenic heat releases exacerbated high temperatures in the urban area. Notably, urban land-cover change and anthropogenic heat release were responsible for 64% and 36% of the UHI intensity, respectively. Both cool and green roofs decreased near-surface air temperatures. The most dramatic decrease in near-surface air temperature occurred in the late morning; nocturnal air temperature decreased slightly because of the decrease in urban heat storage associated with the cool roof strategy. In addition, the UHI mitigation strategies affected the entire urban boundary layer. The decrease in the potential temperature and static stability created a stable urban boundary layer in which turbulent kinetic energy (TKE) decreased simultaneously. Analysis of an urban belt near a large water body showed that the decrease in the surface skin temperature difference between land and the water body weakened the daytime lake breeze. This effect was observed in both the inflow in the boundary layer and the return flow above the boundary layer, and it decreased the heat and moisture exchange between the lake and land boundary layers.

Full access
Da-Lin Zhang
and
Ning Bao

Abstract

Recent observations have revealed that some mesoscale convective systems (MCSs) could undergo multiple cycles of convective development and dissipation, and, under certain environments, they appeared to be responsible for (barotropic) oceanic or tropical cyclogenesis. In this study, oceanic cyclogenesis, as induced by an MCS moving offshore and then driven by deep convection in a near-barotropic environment, is investigated by extending to 90 h the previously documented 18-h simulation of the MCSs that were responsible for the July 1977 Johnstown flash flood. It is demonstrated that the mesoscale model can reproduce very well much of the meso-β-scale structures and evolution of the long-lived MCS out to 90 h. These include the development and dissipation of the continental MCSs as well as the associated surface and tropospheric perturbations, the timing and location in the initiation of a new MCS after 36 h and in the genesis of a surface mesolow over the warm Gulf Stream water after 60-h integration, the track and the deepening of the surface cyclone into a “tropical storm,” the maintenance of a midlevel mesovortex/trough system, and the propagation of a large-scale cold front with respect to the surface cyclone.

It is found that the new MCS is triggered after the vortex/trough moved offshore and interacted with the land-ocean thermal contrasts during the afternoon hours. The oceanic cyclogenesis begins at 150–180 km to the south of the vortex, as the associated surface trough advances into the Gulf Stream and weakens. Then, the cyclone overpowers quickly the low-level portion of the vortex circulation and deepens 14 hPa in 24 h. A comparison with a dry sensitivity simulation shows that the cyclogenesis occurs entirely as a consequence of the convective forcing. Without it, an 84-h simulation produces only a surface trough with the minimum pressure being nearly the same as that left behind by the previous MCSs. It is shown that the vortex/trough provides persistent convergence at its southern periphery for the continued convective development, whereas the convectively enhanced low-level flow tends to (i) “pump” up sensible and latent heat fluxes from the warm ocean surface and (ii) transport the high-θ e air in a slantwise fashion into the region having lower θ e aloft, thereby causing further conditional instability, increased convection, and more rapid deepening. The interactions of the continental MCS/vortex and the oceanic cyclone/storm systems with their larger-scale environments are also discussed.

Full access
Da-Lin Zhang
and
Ning Bao

Abstract

The genesis of intense cyclonic vorticity in the boundary layer and the transformation of a low-level cold pool to a warm-core anomaly associated with the long-lived mesoscale convective systems (MCSs), which produced the July 1977 Johnstown flash flood and later developed into a tropical storm, are examined using a 90-h real-data simulation of the evolution from a continental MCS/vortex to an oceanic cyclone/storm system. It is shown that the midlevel vortex/trough at the end of the continental MCS's life cycle is characterized by a warm anomaly above and a cold anomaly below. The mesovortex, as it drifts toward the warm Gulf Stream water, plays an important role in initiating and organizing a new MCS and a cyclonic (shear) vorticity band at the southern periphery of the previously dissipated MCS. It is found from the vorticity budget that the vorticity band is amplified through stretching of absolute vorticity as it is wrapped around in a slantwise manner toward the cyclone center. Then, the associated shear vorticity is converted to curvature vorticity near the center, leading to the formation of a “comma-shaped” vortex and the rapid spinup of the surface cyclone to tropical storm intensity.

Thermodynamic budgets reveal that the vertical transfer of surface fluxes from the warm ocean and the convectively induced grid-scale transport are responsible for the development of a high-θ e tongue, which is wrapped around in a fashion similar to the vorticity band, causing conditional instability and further organization of the convective storm. Because the genesis occurs at the southern periphery of the vortex/trough, the intensifying cyclonic circulation tends to advect the pertinent cold air in the north-to-northwesterly flow into the convective storm and the ambient warmer air into the cyclone center, thereby transforming the low-level cold anomaly to a warm-cored structure near the cyclone core. It is shown that the transformation and the evolution of the surface cyclone are mainly driven by the low-level vorticity concentrations.

It is found that many of the cyclogenesis scenarios in the present case are similar to those noted in previous tropical cyclogenesis studies and observed at the early stages of tropical cyclogenesis from MCSs during the Tropical Experiment in Mexico. Therefore, the results have significant implications with regard to tropical cyclogenesis from MCSs.

Full access
Ning Shi
,
Xiaoqiong Wang
,
Leying Zhang
, and
Haiming Xu

Abstract

This study categorized blocking high (BH) episodes during the boreal summer in northeast Asia (40°–70°N, 100°–150°E) into four types according to their wave-breaking features at the dynamic tropopause on the initial day: anticyclonic warm, cyclonic warm, anticyclonic cold, and cyclonic cold. Based on the results of a statistical analysis, it was shown that 1) the anticyclonic-warm type tended to occur in eastern Russia (55°–70°N, 127.5°–142.5°E), whereas the other three types preferentially occurred in the vicinity of Lake Baikal; 2) the two cold types generally were more common than the two warm types; and 3) the average life spans of the two anticyclonic types were longer than those of the two cyclonic types. According to a composite analysis, the four BH types were preceded by different wave train–like anomalies over the Eurasian continent over approximately one week. Correspondingly, each BH type was characterized by distinct Rossby wave propagation features. Interestingly, a northeastward propagation of the Rossby waves around the BHs was evident in the two cyclonic types. This feature differs from the quasi-meridional propagation of Rossby waves originating from suppressed convection activity over subtropical regions documented in previous studies. This study also found that every BH type was accompanied by distinct precipitation anomaly patterns over East Asia, highlighting the necessity of classifying BHs.

Full access
Xin Zhang
,
Xiang-Yu Huang
, and
Ning Pan

Abstract

The authors propose a new technique for parallelizations of tangent linear and adjoint codes, which were applied in the redevelopment for the Weather Research and Forecasting (WRF) model with its Advanced Research WRF dynamic core using the automatic differentiation engine. The tangent linear and adjoint codes of the WRF model (WRFPLUS) now have the following improvements: A complete check interface ensures that developers write accurate tangent linear and adjoint codes with ease and efficiency. A new technique based on the nature of duality that existed among message passing interface communication routines was adopted to parallelize the WRFPLUS model. The registry in the WRF model was extended to automatically generate the tangent linear and adjoint codes of the required communication operations. This approach dramatically speeds up the software development cycle of the parallel tangent linear and adjoint codes and leads to improved parallel efficiency. Module interfaces were constructed for coupling tangent linear and adjoint codes of the WRF model with applications such as four-dimensional variational data assimilation, forecast sensitivity to observation, and others.

Full access
Wenjing Zhao
,
Ning Zhang
,
Jianning Sun
, and
Jun Zou

Abstract

An offline single-layer urban canopy model (SLUCM) was driven by the surface energy balance observations in winter in Nanjing, China, to evaluate the capability of the model to simulate the urban surface energy balance. The results of the evaluation suggest that the simulated daytime net radiation is approximately 20% lower than the observed and display relatively high systematic error, which is due to the relatively poor capacity of the model to simulate the daytime longwave radiation (which is underestimated by approximately 35%). By contrast, the simulated sensible heat flux shows mainly unsystematic error. Moreover, the one-at-a-time method is used to conduct a sensitivity analysis of the model parameters. The sensitivity analysis demonstrates that the major factors affecting the surface energy balance are the albedo, the thermal conductivity, and the roof and wall volumetric heat capacity. The influences of the shape of the street canyon and the average height of buildings are relatively weaker. The effects of the albedo on the fluxes are nearly linear. The effects of the thermal parameters are approximately logarithmic. Furthermore, the simulated sensible heat flux in the SLUCM is insensitive to the morphological parameters of the buildings.

Full access
Bo Zhang
,
Ge Liu
,
Yuejian Zhu
, and
Ning Shi

Abstract

Based on a recently developed approach that can recognize both persistent blocking and ridge events effectively, the contributions of the frequency of these persistent events (FOPE) over different regions in Eurasia to precipitation over eastern China were investigated. The results reveal that, the FOPE over the longitudinal range of 110°–130°E, near the Stanovoy Mountains and the Okhotsk Sea, is significantly correlated with precipitation over the middle and lower reaches of the Yangtze River (MLRYR) during summer, particularly in August. The preceding full July (or 1–20 July) mean Balkhash Lake–Caucasus geopotential height index, which measures the combined effect of the Balkhash Lake and Caucasus geopotential height anomalies, is closely related to the August geopotential height anomaly around the Stanovoy Mountains and the Okhotsk Sea, and can therefore reflect the August 110°–130°E FOPE. The predictability based on this preceding atmospheric signal seems to be attributable to slow-varying atmospheric processes on a subseasonal (20-day mean) time scale. On this time scale, the Balkhash Lake and Caucasus geopotential height anomalies occur prior to, and seem to modulate, the geopotential height anomaly around the Stanovoy Mountains and the associated 110°–130°E FOPE through an eastward extension and through exciting a positive–negative–positive pattern in 500-hPa geopotential heights, respectively. As a result of the slow-varying atmospheric processes, this preceding atmospheric signal performs well in predicting the August 110°–130°E FOPE, which also facilitates the prediction of the MLRYR precipitation.

Full access
Ning Zhang
,
Yan Chen
,
Ling Luo
, and
Yongwei Wang

Abstract

Cool roofs and green roofs are two popular methods to mitigate the urban heat island and improve urban climates. The effectiveness of different urban heat island mitigation strategies in the summer of 2013 in the Yangtze River delta, China, is investigated using the Weather Research and Forecasting (WRF) Model coupled with a physically based single-layer urban canopy model. The modifications to the roof surface changed the urban surface radiation balance and then modified the local surface energy budget. Both cool roofs and green roofs led to a lower surface skin temperature and near-surface air temperature. Increasing the roof albedo to 0.5 caused a similar effectiveness as covering 25% of urban roofs with vegetation; increasing the roof albedo to 0.7 caused a similar near-surface air temperature decrease as 50% green roof coverage. The near-surface relative humidity increased in both cool roof and green roof experiments because of the combination of the impacts of increases in specific humidity and decreases in air temperature. The regional impacts of cool roofs and green roofs were evaluated using a regional effect index. A regional impact was found for near-surface air temperature and specific/relative humidity when the percentage of roofs covered with high-albedo materials or green roofs reached a higher fraction (greater than 50%). The changes in the vertical profiles of temperature cause a more stable atmospheric boundary layer over the urban area; at the same time, the crossover phenomena occurred above the boundary layer due to the decrease in vertical wind speed.

Full access
Ning Zhang
,
Zhiying Li
, and
Steven M. Quiring

Abstract

Drought monitoring is critical for managing agriculture and water resources and for triggering state emergency response plans and hazard mitigation activities. Fixed thresholds serve as guidelines for the U.S. Drought Monitor (USDM). However, fixed drought thresholds (i.e., using the same threshold in all seasons and climate regions) may not properly reflect local conditions and impacts. Therefore, this study develops impacts-based drought thresholds that are appropriate for drought monitoring in Ohio. We examined four drought indices that are currently used by the state of Ohio: standardized precipitation index (SPI), standardized precipitation evapotranspiration index (SPEI), Palmer’s Z index, and Palmer hydrological drought index (PHDI). Streamflow and corn yield are used as indicators of hydrological and agricultural drought impacts, respectively. Our results show that fixed thresholds tend to indicate milder drought conditions in Ohio, while the proposed impacts-based drought thresholds are more sensitive to exceptional drought (D4) conditions. The area percentage of D4 based on impacts-based drought thresholds is more strongly correlated with corn yield and streamflow. This study provides a methodology for developing local impacts-based drought thresholds that can be applied to other regions where long-term drought impact records exist to provide regionally representative depictions of conditions and improve drought monitoring.

Restricted access