Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Noah Knowles x
  • All content x
Clear All Modify Search
Noah Knowles

Abstract

Trend tests, linear regression, and canonical correlation analysis were used to quantify changes in National Weather Service Cooperative Observer (COOP) snow depth data and derived quantities, precipitation, snowfall, and temperature over the study period 1950–2010. Despite widespread warming, historical trends in snowfall and snow depth are generally mixed owing to competing influences of trends in precipitation. Trends toward later snow-cover onset in the western half of the conterminous United States and earlier onset in the eastern half and a widespread trend toward earlier final meltoff of snow cover combined to produce trends toward shorter snow seasons in the eastern half of the United States and in the west and longer snow seasons in the Great Plains and southern Rockies. The annual total number of days with snow cover exhibited a widespread decline. Monthly trend patterns show the dominant influence of temperature trends on occurrence of snow cover in the warmer snow-season months and a combination of temperature and precipitation trends in the colder months. A canonical correlation analysis indicated that most trends presented here took hold in the 1970s, consistent with the temporal pattern of global warming during the study period.

Full access
Noah Knowles, Michael D. Dettinger, and Daniel R. Cayan

Abstract

The water resources of the western United States depend heavily on snowpack to store part of the wintertime precipitation into the drier summer months. A well-documented shift toward earlier runoff in recent decades has been attributed to 1) more precipitation falling as rain instead of snow and 2) earlier snowmelt. The present study addresses the former, documenting a regional trend toward smaller ratios of winter-total snowfall water equivalent (SFE) to winter-total precipitation (P) during the period 1949–2004.

The trends toward reduced SFE are a response to warming across the region, with the most significant reductions occurring where winter wet-day minimum temperatures, averaged over the study period, were warmer than −5°C. Most SFE reductions were associated with winter wet-day temperature increases between 0° and +3°C over the study period. Warmings larger than this occurred mainly at sites where the mean temperatures were cool enough that the precipitation form was less susceptible to warming trends.

The trends toward reduced SFE/P ratios were most pronounced in March regionwide and in January near the West Coast, corresponding to widespread warming in these months. While mean temperatures in March were sufficiently high to allow the warming trend to produce SFE/P declines across the study region, mean January temperatures were cooler, with the result that January SFE/P impacts were restricted to the lower elevations near the West Coast.

Extending the analysis back to 1920 shows that although the trends presented here may be partially attributable to interdecadal climate variability associated with the Pacific decadal oscillation, they also appear to result from still longer-term climate shifts.

Full access
Sean P. Burns, Noah P. Molotch, Mark W. Williams, John F. Knowles, Brian Seok, Russell K. Monson, Andrew A. Turnipseed, and Peter D. Blanken

Abstract

Snowpack temperatures from a subalpine forest below Niwot Ridge, Colorado, are examined with respect to atmospheric conditions and the 30-min above-canopy and subcanopy eddy covariance fluxes of sensible Q h and latent Q e heat. In the lower snowpack, daily snow temperature changes greater than 1°C day−1 occurred about 1–2 times in late winter and early spring, which resulted in transitions to and from an isothermal snowpack. Though air temperature was a primary control on snowpack temperature, rapid snowpack warm-up events were sometimes preceded by strong downslope winds that kept the nighttime air (and canopy) temperature above freezing, thus increasing sensible heat and longwave radiative transfer from the canopy to the snowpack. There was an indication that water vapor condensation on the snow surface intensified the snowpack warm-up.

In late winter, subcanopy Q h was typically between −10 and 10 W m−2 and rarely had a magnitude larger than 20 W m−2. The direction of subcanopy Q h was closely related to the canopy temperature and only weakly dependent on the time of day. The daytime subcanopy Q h monthly frequency distribution was near normal, whereas the nighttime distribution was more peaked near zero with a large positive skewness. In contrast, above-canopy Q h was larger in magnitude (100–400 W m−2) and primarily warmed the forest–surface at night and cooled it during the day. Around midday, decoupling of subcanopy and above-canopy air led to an apparent cooling of the snow surface by sensible heat. Sources of uncertainty in the subcanopy eddy covariance flux measurements are suggested. Implications of the observed snowpack temperature changes for future climates are discussed.

Full access