Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Nuno Serra x
- Refine by Access: All Content x
Abstract
Decadal changes of the liquid freshwater content in the Arctic Ocean are studied with a suite of forward and adjoint model simulations. Adjoint sensitivities show that freshwater volume changes in the Norwegian Atlantic Current north of the Lofoten basin and a salinity maximum in the Fram Strait and in the Canadian Archipelago lead to an enhanced northward transport of freshwater. The dynamical sensitivities indicate that stronger freshwater export from the Arctic is related to an enhanced cyclonic circulation around Greenland, with an enhanced export through the Canadian Archipelago and a stronger circulation within the Fram Strait. Associated with this circulation around Greenland is a large-scale cyclonic circulation in the Arctic. Cyclonic wind stress anomalies in the Arctic Ocean as well as over the Nordic seas and parts of the subpolar Atlantic are optimal to force the freshwater transport changes.
Results from a simulation over the period 1948–2010 corroborate the result that Arctic freshwater content changes are mainly related to the strength of the circulation around Greenland. Volume transport changes are more important than salinity changes. Freshwater content changes can be explained by wind stress–driven transport variability, with larger export for cyclonic atmospheric forcing. By redistributing freshwater within the Arctic, cyclonic wind stress leads to high sea level in the periphery of the Arctic, and the stronger gradient from the Arctic to the North Atlantic enhances the export through the passages. A second mechanism is the wind-driven Sverdrup circulation, which can be described by “island rule” including friction. For this, wind stress in the Arctic is not important.
Abstract
Decadal changes of the liquid freshwater content in the Arctic Ocean are studied with a suite of forward and adjoint model simulations. Adjoint sensitivities show that freshwater volume changes in the Norwegian Atlantic Current north of the Lofoten basin and a salinity maximum in the Fram Strait and in the Canadian Archipelago lead to an enhanced northward transport of freshwater. The dynamical sensitivities indicate that stronger freshwater export from the Arctic is related to an enhanced cyclonic circulation around Greenland, with an enhanced export through the Canadian Archipelago and a stronger circulation within the Fram Strait. Associated with this circulation around Greenland is a large-scale cyclonic circulation in the Arctic. Cyclonic wind stress anomalies in the Arctic Ocean as well as over the Nordic seas and parts of the subpolar Atlantic are optimal to force the freshwater transport changes.
Results from a simulation over the period 1948–2010 corroborate the result that Arctic freshwater content changes are mainly related to the strength of the circulation around Greenland. Volume transport changes are more important than salinity changes. Freshwater content changes can be explained by wind stress–driven transport variability, with larger export for cyclonic atmospheric forcing. By redistributing freshwater within the Arctic, cyclonic wind stress leads to high sea level in the periphery of the Arctic, and the stronger gradient from the Arctic to the North Atlantic enhances the export through the passages. A second mechanism is the wind-driven Sverdrup circulation, which can be described by “island rule” including friction. For this, wind stress in the Arctic is not important.
Abstract
Three-dimensional (3D) finite-time Lyapunov exponents (FTLEs) are computed from numerical simulations of a freely evolving mixed layer (ML) front in a zonal channel undergoing baroclinic instability. The 3D FTLEs show a complex structure, with features that are less defined than the two-dimensional (2D) FTLEs, suggesting that stirring is not confined to the edges of vortices and along filaments and posing significant consequences on mixing. The magnitude of the FTLEs is observed to be strongly determined by the vertical shear. A scaling law relating the local FTLEs and the nonlocal density contrast used to initialize the ML front is derived assuming thermal wind balance. The scaling law only converges to the values found from the simulations within the pycnocline, while it displays differences within the ML, where the instabilities show a large ageostrophic component. The probability distribution functions of 2D and 3D FTLEs are found to be non-Gaussian at all depths. In the ML, the FTLEs wavenumber spectra display −1 slopes, while in the pycnocline, the FTLEs wavenumber spectra display −2 slopes, corresponding to frontal dynamics. Close to the surface, the geodesic Lagrangian coherent structures (LCSs) reveal a complex stirring structure, with elliptic structures detaching from the frontal region. In the pycnocline, LCSs are able to detect filamentary structures that are not captured by the Eulerian fields.
Abstract
Three-dimensional (3D) finite-time Lyapunov exponents (FTLEs) are computed from numerical simulations of a freely evolving mixed layer (ML) front in a zonal channel undergoing baroclinic instability. The 3D FTLEs show a complex structure, with features that are less defined than the two-dimensional (2D) FTLEs, suggesting that stirring is not confined to the edges of vortices and along filaments and posing significant consequences on mixing. The magnitude of the FTLEs is observed to be strongly determined by the vertical shear. A scaling law relating the local FTLEs and the nonlocal density contrast used to initialize the ML front is derived assuming thermal wind balance. The scaling law only converges to the values found from the simulations within the pycnocline, while it displays differences within the ML, where the instabilities show a large ageostrophic component. The probability distribution functions of 2D and 3D FTLEs are found to be non-Gaussian at all depths. In the ML, the FTLEs wavenumber spectra display −1 slopes, while in the pycnocline, the FTLEs wavenumber spectra display −2 slopes, corresponding to frontal dynamics. Close to the surface, the geodesic Lagrangian coherent structures (LCSs) reveal a complex stirring structure, with elliptic structures detaching from the frontal region. In the pycnocline, LCSs are able to detect filamentary structures that are not captured by the Eulerian fields.
Abstract
The warming Nordic seas potentially tend to decrease the overflow across the Greenland–Iceland–Scotland Ridge (GISR) system. Recent observations by Macrander et al. document a significant drop in the intensity of outflowing Denmark Strait Overflow Water of more than 20% over 3 yr and a simultaneous increase in the temperature of the bottom layers of more than 0.4°C. A simulation of the exchange across the GISR with a regional ocean circulation model is used here to identify possible mechanisms that control changes in the Denmark Strait overflow and its relations to changed forcing condition. On seasonal and longer time scales, the authors establish links of the overflow anomalies to a decreasing capacity of the dense water reservoir caused by a change of circulation pattern north of the sill. On annual and shorter time scales, the wind stress curl around Iceland determines the barotropic circulation around the island and thus the barotropic flow through Denmark Strait. For the overlapping time scales, the barotropic and overflow component interactively determine transport variations. Last, a relation between sea surface height and reservoir height changes upstream of the sill is used to predict the overflow variability from altimeter data. Estimated changes are in agreement with other recent transport estimates based on current-meter arrays.
Abstract
The warming Nordic seas potentially tend to decrease the overflow across the Greenland–Iceland–Scotland Ridge (GISR) system. Recent observations by Macrander et al. document a significant drop in the intensity of outflowing Denmark Strait Overflow Water of more than 20% over 3 yr and a simultaneous increase in the temperature of the bottom layers of more than 0.4°C. A simulation of the exchange across the GISR with a regional ocean circulation model is used here to identify possible mechanisms that control changes in the Denmark Strait overflow and its relations to changed forcing condition. On seasonal and longer time scales, the authors establish links of the overflow anomalies to a decreasing capacity of the dense water reservoir caused by a change of circulation pattern north of the sill. On annual and shorter time scales, the wind stress curl around Iceland determines the barotropic circulation around the island and thus the barotropic flow through Denmark Strait. For the overlapping time scales, the barotropic and overflow component interactively determine transport variations. Last, a relation between sea surface height and reservoir height changes upstream of the sill is used to predict the overflow variability from altimeter data. Estimated changes are in agreement with other recent transport estimates based on current-meter arrays.
Abstract
Historical hydrographic data (1940s–2010) show a distinct cross-slope difference of the lower halocline water (LHW) over the Laptev Sea continental margins. Over the slope, the LHW is on average warmer and saltier by 0.2°C and 0.5 psu, respectively, relative to the off-slope LHW. The LHW temperature time series constructed from the on-slope historical records are related to the temperature of the Atlantic Water (AW) boundary current transporting warm water from the North Atlantic Ocean. In contrast, the on-slope LHW salinity is linked to the sea ice and wind forcing over the potential upstream source region in the Barents and northern Kara Seas, as also indicated by hydrodynamic model results. Over the Laptev Sea continental margin, saltier LHW favors weaker salinity stratification that, in turn, contributes to enhanced vertical mixing with underlying AW.
Abstract
Historical hydrographic data (1940s–2010) show a distinct cross-slope difference of the lower halocline water (LHW) over the Laptev Sea continental margins. Over the slope, the LHW is on average warmer and saltier by 0.2°C and 0.5 psu, respectively, relative to the off-slope LHW. The LHW temperature time series constructed from the on-slope historical records are related to the temperature of the Atlantic Water (AW) boundary current transporting warm water from the North Atlantic Ocean. In contrast, the on-slope LHW salinity is linked to the sea ice and wind forcing over the potential upstream source region in the Barents and northern Kara Seas, as also indicated by hydrodynamic model results. Over the Laptev Sea continental margin, saltier LHW favors weaker salinity stratification that, in turn, contributes to enhanced vertical mixing with underlying AW.