Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Olga L. Mayol-Bracero x
  • All content x
Clear All Modify Search
Joseph M. Prospero and Olga L. Mayol-Bracero

Every year huge quantities of soil dust are carried by winds from Africa, across the Atlantic, and to the Caribbean. No other ocean region is so extensively and persistently impacted by such high concentrations of dust, a region that extends over 7000 km from the coast of Africa to the Caribbean and to the bounding continental shores of the Americas. In effect, the Caribbean Basin can be thought of as the “receptor” site of the Saharan dust “source,” a source that accounts for over half of global dust emissions. It is generally recognized that on a global scale mineral dust can affect many aspects of climate, marine biogeochemical processes, soil fertility, air quality, and human health. However, it is difficult to assess the impact on the Caribbean Basin because of the dearth of studies in this region. A better understanding is needed of the factors that affect the transport of dust, the physical and chemical properties of the transported materials, and how these might change during transport. Of particular interest is how climate change might affect dust transport in the future. Presented here is a brief overview of research relevant to the region and issues in dust-related research that need to be addressed.

Full access
Marcos Andrade-Flores, Nestor Rojas, Megan L. Melamed, Olga L. Mayol-Bracero, Michel Grutter, Laura Dawidowski, Juan Carlos Antuña-Marrero, Carlos Rudamas, Laura Gallardo, Ruben Mamani-Paco, Maria de Fatima Andrade, and Nicolas Huneeus

Abstract

In 2013, the international Commission on Atmospheric Chemistry and Global Pollution (iCACGP) and the International Global Atmospheric Chemistry (IGAC) Project Americas Working Group (iCACGP/IGAC AWG) was formed to build a cohesive network and foster the next generation of atmospheric scientists with the goal of contributing to a scientific community focused on building collective knowledge for the Americas. The Latin America–Caribbean (LAC) region shares common history, culture, and socioeconomic issues but, at the same time, it is highly diverse in its physical and human geography. The LAC region is unique because approximately 80% of its population lives in urban areas, resulting in high-density hotspots of urbanization and vast unpopulated rural areas. In recent years, most countries of the region have experienced rapid growth in population and industrialization as their economies emerge. The rapid urbanization, the associated increases in mobile and industrial sources, and the growth of the agricultural activities related to biomass burning have degraded air quality in certain areas of the LAC region. Air pollution has negative implications for human health, ecosystems, and climate. In addition, air pollution and the warming caused by greenhouse gases could impact the melting of Andean glaciers, an important source of freshwater. To better understand the links between air pollution and climate, it is necessary to increase the number of atmospheric scientists and improve our observational, analytical, and modeling capacities. This requires sustained and prioritized funding as well as stronger collaboration within the LAC region.

Full access
Elisabeth Andrews, Patrick J. Sheridan, John A. Ogren, Derek Hageman, Anne Jefferson, Jim Wendell, Andrés Alástuey, Lucas Alados-Arboledas, Michael Bergin, Marina Ealo, A. Gannet Hallar, András Hoffer, Ivo Kalapov, Melita Keywood, Jeongeun Kim, Sang-Woo Kim, Felicia Kolonjari, Casper Labuschagne, Neng-Huei Lin, AnneMarie Macdonald, Olga L. Mayol-Bracero, Ian B. McCubbin, Marco Pandolfi, Fabienne Reisen, Sangeeta Sharma, James P. Sherman, Mar Sorribas, and Junying Sun

Abstract

To estimate global aerosol radiative forcing, measurements of aerosol optical properties are made by the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL)’s Global Monitoring Division (GMD) and their collaborators at 30 monitoring locations around the world. Many of the sites are located in regions influenced by specific aerosol types (Asian and Saharan desert dust, Asian pollution, biomass burning, etc.). This network of monitoring stations is a shared endeavor of NOAA and many collaborating organizations, including the World Meteorological Organization (WMO)’s Global Atmosphere Watch (GAW) program, the U.S. Department of Energy (DOE), several U.S. and foreign universities, and foreign science organizations. The result is a long-term cooperative program making atmospheric measurements that are directly comparable with those from all the other network stations and with shared data access. The protocols and software developed to support the program facilitate participation in GAW’s atmospheric observation strategy, and the sites in the NOAA/ESRL network make up a substantial subset of the GAW aerosol observations. This paper describes the history of the NOAA/ESRL Federated Aerosol Network, details about measurements and operations, and some recent findings from the network measurements.

Open access
Robert M. Rauber, Bjorn Stevens, Jennifer Davison, Sabine Goke, Olga L. Mayol-Bracero, David Rogers, Paquita Zuidema, Harry T. Ochs III, Charles Knight, Jorgen Jensen, Sarah Bereznicki, Simona Bordoni, Humberto Caro-Gautier, Marilé Colón-Robles, Maylissa Deliz, Shaunna Donaher, Virendra Ghate, Ela Grzeszczak, Colleen Henry, Anne Marie Hertel, Ieng Jo, Michael Kruk, Jason Lowenstein, Judith Malley, Brian Medeiros, Yarilis Méndez-Lopez, Subhashree Mishra, Flavia Morales-García, Louise A. Nuijens, Dennis O'Donnell, Diana L. Ortiz-Montalvo, Kristen Rasmussen, Erin Riepe, Sarah Scalia, Efthymios Serpetzoglou, Haiwei Shen, Michael Siedsma, Jennifer Small, Eric Snodgrass, Panu Trivej, and Jonathan Zawislak

The Rain in Cumulus over the Ocean (RICO) field campaign carried out a wide array of educational activities, including a major first in a field project—a complete mission, including research flights, planned and executed entirely by students. This article describes the educational opportunities provided to the 24 graduate and 9 undergraduate students who participated in RICO.

Full access