Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Oliver Krueger x
  • All content x
Clear All Modify Search
Oliver Krueger and Hans von Storch

Abstract

Air pressure readings and their variations are commonly used to make inferences about storm activity. More precisely, it is assumed that the variation of annual and seasonal statistics of several pressure-based proxies describes changes in the past storm climate qualitatively, an assumption that has yet to be proven.

A systematic evaluation of the informational content of five pressure-based proxies for storm activity based on single-station observations of air pressure is presented. The number of deep lows, lower percentiles of pressure, the frequency of absolute pressure tendencies above certain thresholds, as well as mean values and high percentiles of absolute pressure tendencies is examined. Such an evaluation needs long and homogeneous records of wind speed, something that is not available from observations. Consequently, the proxies are examined by using datasets of ground-level wind speeds and air pressure from the NCEP-driven and spectrally nudged regional model, REMO. The proxies are gauged against the 95th and 99th percentile time series of ground-level wind speeds to quantify the relation between pressure-based proxies and storminess. These analyses rely on bootstrap and binomial hypothesis testing. The analyses of single-station-based proxies indicate that the proxies are generally linearly linked to storm activity, and that absolute pressure tendencies have the highest informational content. Further, it is investigated as to whether the proxies have the potential for describing storminess over larger areas, also with regard to surface conditions. It is found that absolute pressure tendencies have improved informational value when describing storm activity over larger areas, while low pressure readings do not show improved informational value.

Full access
Oliver Krueger and Hans von Storch

Abstract

Yearly percentiles of geostrophic wind speeds serve as a widely used proxy for assessing past storm activity. Here, daily geostrophic wind speeds are derived from a geographical triangle of surface air pressure measurements and are used to build yearly frequency distributions. It is commonly believed, however unproven, that the variation of the statistics of strong geostrophic wind speeds describes the variation of statistics of ground-level wind speeds. This study evaluates this approach by examining the correlation between specific annual (seasonal) percentiles of geostrophic and of area-maximum surface wind speeds to determine whether the two distributions are linearly linked in general.

The analyses rely on bootstrap and binomial hypothesis testing as well as on analysis of variance. Such investigations require long, homogeneous, and physically consistent data. Because such data are barely existent, regional climate model–generated wind and surface air pressure fields in a fine spatial and temporal resolution are used. The chosen regional climate model is the spectrally nudged and NCEP-driven regional model (REMO) that covers Europe and the North Atlantic. Required distributions are determined from diagnostic 10-m and geostrophic wind speed, which is calculated from model air pressure at sea level.

Obtained results show that the variation of strong geostrophic wind speed statistics describes the variation of ground-level wind speed statistics. Annual and seasonal quantiles of geostrophic wind speed and ground-level wind speed are positively linearly related. The influence of low-pass filtering is also considered and found to decrease the quality of the linear link. Moreover, several factors are examined that affect the description of storminess through geostrophic wind speed statistics. Geostrophic wind from sea triangles reflects storm activity better than geostrophic wind from land triangles. Smaller triangles lead to a better description of storminess than bigger triangles.

Full access
Oliver Krueger and Jin-Song Von Storch

Abstract

Decadal climate prediction is a challenging aspect of climate research. It has been and will be tackled by various modeling groups. This study proposes a simple empirical forecasting system for the near-surface temperature that can be used as a benchmark for climate predictions obtained from atmosphere–ocean GCMs (AOGCMs). It is assumed that the temperature time series can be decomposed into components related to external forcing and internal variability. The considered external forcing consists of the atmospheric CO2 concentration. Separation of the two components is achieved by using the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) twentieth-century integrations. Temperature anomalies due to changing external forcing are described by a linear regression onto the forcing. The future evolution of the external forcing that is needed for predictions is approximated by a linear extrapolation of the forcing prior to the initial time. Temperature anomalies owing to the internal variability are described by an autoregressive model. An evaluation of hindcast experiments shows that the empirical model has a cross-validated correlation skill of 0.84 and a cross-validated rms error of 0.12 K in hindcasting global-mean temperature anomalies 10 years ahead.

Full access
Oliver Krueger, Frauke Feser, and Ralf Weisse

Abstract

Geostrophic wind speeds calculated from mean sea level pressure readings are used to derive time series of northeast Atlantic storminess. The technique of geostrophic wind speed triangles provides relatively homogeneous long-term storm activity data and is thus suited for statistical analyses. This study makes use of historical air pressure data available from the International Surface Pressure Databank (ISPD) complemented with data from the Danish and Norwegian Meteorological Institutes. For the first time, the time series of northeast Atlantic storminess is extended until the most recent year available, that is, 2016. A multidecadal increasing trend in storm activity starting in the mid-1960s and lasting until the 1990s, whose high storminess levels are comparable to those found in the late nineteenth century, initiated debate over whether this would already be a sign of climate change. This study confirms that long-term storminess levels have returned to average values in recent years and that the multidecadal increase is part of an extended interdecadal oscillation. In addition, new storm activity uncertainty estimates were developed and novel insights into the connection with the North Atlantic Oscillation (NAO) are provided.

Open access
Frauke Feser, Oliver Krueger, Katja Woth, and Linda van Garderen

Abstract

This study analyzes changes in extratropical windstorms over the North Atlantic during the last decades. We assessed and compared North Atlantic winter storm activity in a comprehensive approach from three different data sources: modern reanalysis datasets, a dynamically downscaled high-resolution global atmospheric climate simulation, and observations. The multidecadal observations comprise both a storm index derived from geostrophic wind speed triangles and an observational record of low pressure systems counted from weather analyses. Both observational datasets have been compared neither to the most recent reanalyses nor to the downscaled global climate simulation with respect to North Atlantic winter storms before. The similarity of the geostrophic wind speed storm index to reanalyzed high wind speed percentiles and storm numbers confirms its suitability to describe storm frequencies and intensities for multidecadal time scales. The results show that high wind speeds, storm numbers, and spatial storm track distributions are generally alike in high-resolution reanalyses and downscaled datasets and they reveal an increasing similarity to observations over time. Strong decadal and multidecadal variability emerged in high wind speed percentiles and storm frequency, but no long-term changes for the last decades were detected.

Open access
Oliver Krueger, Frederik Schenk, Frauke Feser, and Ralf Weisse

Abstract

Global atmospheric reanalyses have become a common tool for both validation of climate models and diagnostic studies, such as assessing climate variability and long-term trends. Presently, the Twentieth Century Reanalysis (20CR), which assimilates only surface pressure reports, sea ice, and sea surface temperature distributions, represents the longest global reanalysis dataset available covering the period from 1871 to the present. Currently the 20CR dataset is extensively used for the assessment of climate variability and trends. Here, the authors compare the variability and long-term trends in northeast Atlantic storminess derived from 20CR and from observations. A well-established storm index derived from pressure observations over a relatively densely monitored marine area is used. It is found that both variability and long-term trends derived from 20CR and from observations are inconsistent. In particular, both time series show opposing trends during the first half of the twentieth century: both storm indices share a similar behavior only for the more recent periods. While the variability and long-term trend derived from the observations are supported by a number of independent data and analyses, the behavior shown by 20CR is quite different, indicating substantial inhomogeneities in the reanalysis, most likely caused by the increasing number of observations assimilated into 20CR over time. The latter makes 20CR likely unsuitable for the identification of trends in storminess in the earlier part of the record, at least over the northeast Atlantic. The results imply and reconfirm previous findings that care is needed in general when global reanalyses are used to assess long-term changes.

Full access