Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: P. Alex Reinecke x
  • Refine by Access: All Content x
Clear All Modify Search
Eric A. Hendricks
,
James D. Doyle
,
Stephen D. Eckermann
,
Qingfang Jiang
, and
P. Alex Reinecke

Abstract

During austral winter, and away from orographic maxima or “hot spots,” stratospheric gravity waves in both satellite observations and Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) data reveal enhanced amplitudes in a broad midlatitude belt extending across the Southern Ocean from east of the Andes to south of New Zealand. The peak latitude of this feature slowly migrates poleward from 50° to 60°S. Wave amplitudes are much weaker across the midlatitude Pacific Ocean. These features of the wave field are in striking agreement with diagnostics of baroclinic growth rates in the troposphere associated with midlatitude winter storm tracks and the climatology of the midlatitude jet. This correlation suggests that these features of the stratospheric gravity wave field are controlled by geographical variations of tropospheric nonorographic gravity wave sources in winter storm tracks: spontaneous adjustment emission from the midlatitude winter jet, frontogenesis, and convection.

Full access
James D. Doyle
,
Clark Amerault
,
Carolyn A. Reynolds
, and
P. Alex Reinecke

Abstract

The sensitivity and predictability of a rapidly developing extratropical cyclone, Xynthia, that had a severe impact on Europe is explored using a high-resolution moist adjoint modeling system. The adjoint diagnostics indicate that the intensity of severe winds associated with the front just prior to landfall was particularly sensitive to perturbations in the moisture and temperature fields and to a lesser degree the wind fields. The sensitivity maxima are found in the low- and midlevels, oriented in a sloped region along the warm front, and maximized within the warm conveyor belt. The moisture sensitivity indicates that only a relatively small filament of moisture within an atmospheric river present at the initial time was critically important for the development of Xynthia. Adjoint-based optimal perturbations introduced into the tangent linear and nonlinear models exhibit rapid growth over 36 h, while initial perturbations of the opposite sign show substantial weakening of the low-level jet and a marked reduction in the spatial extent of the strong low-level winds. The sensitivity fields exhibit an upshear tilt along the sloping warm conveyor belt and front, and the perturbations extract energy from the mean flow as they are untilted by the shear, consistent with the PV unshielding mechanism. The results of this study underscore the need for accurate moisture observations and data assimilation systems that can adequately assimilate these observations in order to reduce the forecast uncertainties for these severe extratropical cyclones. However, given the nature of the sensitivities and the potential for rapid perturbation and error growth, the intrinsic predictability of severe cyclones such as Xynthia is likely limited.

Full access
Stephen D. Eckermann
,
James D. Doyle
,
P. Alex Reinecke
,
Carolyn A. Reynolds
,
Ronald B. Smith
,
David C. Fritts
, and
Andreas Dörnbrack

Abstract

Gravity wave perturbations in 15-μm nadir radiances from the Atmospheric Infrared Sounder (AIRS) and Cross-Track Infrared Sounder (CrIS) informed scientific flight planning for the Deep Propagating Gravity Wave Experiment (DEEPWAVE). AIRS observations from 2003 to 2011 identified the South Island of New Zealand during June–July as a “natural laboratory” for observing deep-propagating gravity wave dynamics. Near-real-time AIRS and CrIS gravity wave products monitored wave activity in and around New Zealand continuously within 10 regions of scientific interest, providing nowcast guidance and validation for flight planners. A novel technique used these gravity wave products to validate upstream forecasts of nonorographic gravity waves with 1–2-day lead times, providing time to plan flight intercepts as tropospheric westerlies brought forecast source regions into range. Postanalysis verifies the choice of 15 μm radiances for nowcasting, since 4.3-μm gravity wave products yielded spurious diurnal cycles, provided no altitude sensitivity, and proved relatively insensitive to deep gravity wave activity over the South Island. Comparisons of DEEPWAVE flight tracks with AIRS and CrIS gravity wave maps highlight successful repeated vectoring of the aircraft into regions of deep orographic and nonorographic gravity wave activity, and how background winds control the amplitude of waves in radiance perturbation maps. We discuss how gravity wave information in AIRS and CrIS radiances might be directly assimilated into future operational forecasting systems.

Full access
David C. Fritts
,
Ronald B. Smith
,
Michael J. Taylor
,
James D. Doyle
,
Stephen D. Eckermann
,
Andreas Dörnbrack
,
Markus Rapp
,
Bifford P. Williams
,
P.-Dominique Pautet
,
Katrina Bossert
,
Neal R. Criddle
,
Carolyn A. Reynolds
,
P. Alex Reinecke
,
Michael Uddstrom
,
Michael J. Revell
,
Richard Turner
,
Bernd Kaifler
,
Johannes S. Wagner
,
Tyler Mixa
,
Christopher G. Kruse
,
Alison D. Nugent
,
Campbell D. Watson
,
Sonja Gisinger
,
Steven M. Smith
,
Ruth S. Lieberman
,
Brian Laughman
,
James J. Moore
,
William O. Brown
,
Julie A. Haggerty
,
Alison Rockwell
,
Gregory J. Stossmeister
,
Steven F. Williams
,
Gonzalo Hernandez
,
Damian J. Murphy
,
Andrew R. Klekociuk
,
Iain M. Reid
, and
Jun Ma

Abstract

The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was designed to quantify gravity wave (GW) dynamics and effects from orographic and other sources to regions of dissipation at high altitudes. The core DEEPWAVE field phase took place from May through July 2014 using a comprehensive suite of airborne and ground-based instruments providing measurements from Earth’s surface to ∼100 km. Austral winter was chosen to observe deep GW propagation to high altitudes. DEEPWAVE was based on South Island, New Zealand, to provide access to the New Zealand and Tasmanian “hotspots” of GW activity and additional GW sources over the Southern Ocean and Tasman Sea. To observe GWs up to ∼100 km, DEEPWAVE utilized three new instruments built specifically for the National Science Foundation (NSF)/National Center for Atmospheric Research (NCAR) Gulfstream V (GV): a Rayleigh lidar, a sodium resonance lidar, and an advanced mesosphere temperature mapper. These measurements were supplemented by in situ probes, dropsondes, and a microwave temperature profiler on the GV and by in situ probes and a Doppler lidar aboard the German DLR Falcon. Extensive ground-based instrumentation and radiosondes were deployed on South Island, Tasmania, and Southern Ocean islands. Deep orographic GWs were a primary target but multiple flights also observed deep GWs arising from deep convection, jet streams, and frontal systems. Highlights include the following: 1) strong orographic GW forcing accompanying strong cross-mountain flows, 2) strong high-altitude responses even when orographic forcing was weak, 3) large-scale GWs at high altitudes arising from jet stream sources, and 4) significant flight-level energy fluxes and often very large momentum fluxes at high altitudes.

Full access