Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: P. Friedlingstein x
  • Refine by Access: All Content x
Clear All Modify Search
J. M. Gregory
,
C. D. Jones
,
P. Cadule
, and
P. Friedlingstein

Abstract

Perturbations to the carbon cycle could constitute large feedbacks on future changes in atmospheric CO2 concentration and climate. This paper demonstrates how carbon cycle feedback can be expressed in formally similar ways to climate feedback, and thus compares their magnitudes. The carbon cycle gives rise to two climate feedback terms: the concentration–carbon feedback, resulting from the uptake of carbon by land and ocean as a biogeochemical response to the atmospheric CO2 concentration, and the climate–carbon feedback, resulting from the effect of climate change on carbon fluxes. In the earth system models of the Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP), climate–carbon feedback on warming is positive and of a similar size to the cloud feedback. The concentration–carbon feedback is negative; it has generally received less attention in the literature, but in magnitude it is 4 times larger than the climate–carbon feedback and more uncertain. The concentration–carbon feedback is the dominant uncertainty in the allowable CO2 emissions that are consistent with a given CO2 concentration scenario. In modeling the climate response to a scenario of CO2 emissions, the net carbon cycle feedback is of comparable size and uncertainty to the noncarbon–climate response. To quantify simulated carbon cycle feedbacks satisfactorily, a radiatively coupled experiment is needed, in addition to the fully coupled and biogeochemically coupled experiments, which are referred to as coupled and uncoupled in C4MIP. The concentration–carbon and climate–carbon feedbacks do not combine linearly, and the concentration–carbon feedback is dependent on scenario and time.

Full access
J. M. Gregory
,
C. D. Jones
,
P. Cadule
, and
P. Friedlingstein
Full access
A. Anav
,
P. Friedlingstein
,
M. Kidston
,
L. Bopp
,
P. Ciais
,
P. Cox
,
C. Jones
,
M. Jung
,
R. Myneni
, and
Z. Zhu

Abstract

The authors assess the ability of 18 Earth system models to simulate the land and ocean carbon cycle for the present climate. These models will be used in the next Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) for climate projections, and such evaluation allows identification of the strengths and weaknesses of individual coupled carbon–climate models as well as identification of systematic biases of the models. Results show that models correctly reproduce the main climatic variables controlling the spatial and temporal characteristics of the carbon cycle. The seasonal evolution of the variables under examination is well captured. However, weaknesses appear when reproducing specific fields: in particular, considering the land carbon cycle, a general overestimation of photosynthesis and leaf area index is found for most of the models, while the ocean evaluation shows that quite a few models underestimate the primary production.The authors also propose climate and carbon cycle performance metrics in order to assess whether there is a set of consistently better models for reproducing the carbon cycle. Averaged seasonal cycles and probability density functions (PDFs) calculated from model simulations are compared with the corresponding seasonal cycles and PDFs from different observed datasets. Although the metrics used in this study allow identification of some models as better or worse than the average, the ranking of this study is partially subjective because of the choice of the variables under examination and also can be sensitive to the choice of reference data. In addition, it was found that the model performances show significant regional variations.

Full access
P. Friedlingstein
,
P. Cox
,
R. Betts
,
L. Bopp
,
W. von Bloh
,
V. Brovkin
,
P. Cadule
,
S. Doney
,
M. Eby
,
I. Fung
,
G. Bala
,
J. John
,
C. Jones
,
F. Joos
,
T. Kato
,
M. Kawamiya
,
W. Knorr
,
K. Lindsay
,
H. D. Matthews
,
T. Raddatz
,
P. Rayner
,
C. Reick
,
E. Roeckner
,
K.-G. Schnitzler
,
R. Schnur
,
K. Strassmann
,
A. J. Weaver
,
C. Yoshikawa
, and
N. Zeng

Abstract

Eleven coupled climate–carbon cycle models used a common protocol to study the coupling between climate change and the carbon cycle. The models were forced by historical emissions and the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 anthropogenic emissions of CO2 for the 1850–2100 time period. For each model, two simulations were performed in order to isolate the impact of climate change on the land and ocean carbon cycle, and therefore the climate feedback on the atmospheric CO2 concentration growth rate. There was unanimous agreement among the models that future climate change will reduce the efficiency of the earth system to absorb the anthropogenic carbon perturbation. A larger fraction of anthropogenic CO2 will stay airborne if climate change is accounted for. By the end of the twenty-first century, this additional CO2 varied between 20 and 200 ppm for the two extreme models, the majority of the models lying between 50 and 100 ppm. The higher CO2 levels led to an additional climate warming ranging between 0.1° and 1.5°C.

All models simulated a negative sensitivity for both the land and the ocean carbon cycle to future climate. However, there was still a large uncertainty on the magnitude of these sensitivities. Eight models attributed most of the changes to the land, while three attributed it to the ocean. Also, a majority of the models located the reduction of land carbon uptake in the Tropics. However, the attribution of the land sensitivity to changes in net primary productivity versus changes in respiration is still subject to debate; no consensus emerged among the models.

Full access
V. Brovkin
,
L. Boysen
,
V. K. Arora
,
J. P. Boisier
,
P. Cadule
,
L. Chini
,
M. Claussen
,
P. Friedlingstein
,
V. Gayler
,
B. J. J. M. van den Hurk
,
G. C. Hurtt
,
C. D. Jones
,
E. Kato
,
N. de Noblet-Ducoudré
,
F. Pacifico
,
J. Pongratz
, and
M. Weiss

Abstract

The effects of land-use changes on climate are assessed using specified-concentration simulations complementary to the representative concentration pathway 2.6 (RCP2.6) and RCP8.5 scenarios performed for phase 5 of the Coupled Model Intercomparison Project (CMIP5). This analysis focuses on differences in climate and land–atmosphere fluxes between the ensemble averages of simulations with and without land-use changes by the end of the twenty-first century. Even though common land-use scenarios are used, the areas of crops and pastures are specific for each Earth system model (ESM). This is due to different interpretations of land-use classes. The analysis reveals that fossil fuel forcing dominates land-use forcing. In addition, the effects of land-use changes are globally not significant, whereas they are significant for regions with land-use changes exceeding 10%. For these regions, three out of six participating models—the Second Generation Canadian Earth System Model (CanESM2); Hadley Centre Global Environmental Model, version 2 (Earth System) (HadGEM2-ES); and Model for Interdisciplinary Research on Climate, Earth System Model (MIROC-ESM)—reveal statistically significant changes in mean annual surface air temperature. In addition, changes in land surface albedo, available energy, and latent heat fluxes are small but significant for most ESMs in regions affected by land-use changes. These climatic effects are relatively small, as land-use changes in the RCP2.6 and RCP8.5 scenarios are small in magnitude and mainly limited to tropical and subtropical regions. The relative importance of the climatic effects of land-use changes is higher for the RCP2.6 scenario, which considers an expansion of biofuel croplands as a climate mitigation option. The underlying similarity among all models is the loss in global land carbon storage due to land-use changes.

Full access
R. Knutti
,
M. R. Allen
,
P. Friedlingstein
,
J. M. Gregory
,
G. C. Hegerl
,
G. A. Meehl
,
M. Meinshausen
,
J. M. Murphy
,
G.-K. Plattner
,
S. C. B. Raper
,
T. F. Stocker
,
P. A. Stott
,
H. Teng
, and
T. M. L. Wigley

Abstract

Quantification of the uncertainties in future climate projections is crucial for the implementation of climate policies. Here a review of projections of global temperature change over the twenty-first century is provided for the six illustrative emission scenarios from the Special Report on Emissions Scenarios (SRES) that assume no policy intervention, based on the latest generation of coupled general circulation models, climate models of intermediate complexity, and simple models, and uncertainty ranges and probabilistic projections from various published methods and models are assessed. Despite substantial improvements in climate models, projections for given scenarios on average have not changed much in recent years. Recent progress has, however, increased the confidence in uncertainty estimates and now allows a better separation of the uncertainties introduced by scenarios, physical feedbacks, carbon cycle, and structural uncertainty. Projection uncertainties are now constrained by observations and therefore consistent with past observed trends and patterns. Future trends in global temperature resulting from anthropogenic forcing over the next few decades are found to be comparably well constrained. Uncertainties for projections on the century time scale, when accounting for structural and feedback uncertainties, are larger than captured in single models or methods. This is due to differences in the models, the sources of uncertainty taken into account, the type of observational constraints used, and the statistical assumptions made. It is shown that as an approximation, the relative uncertainty range for projected warming in 2100 is the same for all scenarios. Inclusion of uncertainties in carbon cycle–climate feedbacks extends the upper bound of the uncertainty range by more than the lower bound.

Full access