Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: P. H. Lauritzen x
  • All content x
Clear All Modify Search
Jared P. Whitehead, Christiane Jablonowski, Richard B. Rood, and Peter H. Lauritzen

Abstract

The dynamical core of an atmospheric general circulation model is engineered to satisfy a delicate balance between numerical stability, computational cost, and an accurate representation of the equations of motion. It generally contains either explicitly added or inherent numerical diffusion mechanisms to control the buildup of energy or enstrophy at the smallest scales. The diffusion fosters computational stability and is sometimes also viewed as a substitute for unresolved subgrid-scale processes. A particular form of explicitly added diffusion is horizontal divergence damping.

In this paper a von Neumann stability analysis of horizontal divergence damping on a latitude–longitude grid is performed. Stability restrictions are derived for the damping coefficients of both second- and fourth-order divergence damping. The accuracy of the theoretical analysis is verified through the use of idealized dynamical core test cases that include the simulation of gravity waves and a baroclinic wave. The tests are applied to the finite-volume dynamical core of NCAR’s Community Atmosphere Model version 5 (CAM5). Investigation of the amplification factor for the divergence damping mechanisms explains how small-scale meridional waves found in a baroclinic wave test case are not eliminated by the damping.

Full access
K. J. Evans, P. H. Lauritzen, S. K. Mishra, R. B. Neale, M. A. Taylor, and J. J. Tribbia

Abstract

The authors evaluate the climate produced by the Community Climate System Model, version 4, running with the new spectral element atmospheric dynamical core option. The spectral element method is configured to use a cubed-sphere grid, providing quasi-uniform resolution over the sphere and increased parallel scalability and removing the need for polar filters. It uses a fourth-order accurate spatial discretization that locally conserves mass and total energy. Using the Atmosphere Model Intercomparison Project protocol, the results from the spectral element dynamical core are compared with those produced by the default finite-volume dynamical core and with observations. Even though the two dynamical cores are quite different, their simulated climates are remarkably similar. When compared with observations, both models have strengths and weaknesses but have nearly identical root-mean-square errors and the largest biases show little sensitivity to the dynamical core. The spectral element core does an excellent job reproducing the atmospheric kinetic energy spectra, including fully capturing the observed Nastrom–Gage transition when running at 0.125° resolution.

Full access