Search Results

You are looking at 1 - 10 of 102 items for

  • Author or Editor: P. Li x
  • All content x
Clear All Modify Search
C-P. Chang and Tim Li

Abstract

The key questions of how the tropospheric biennial oscillation (TBO) maintains the same phase from northern summer in South Asia to southern summer in Australia, and how the reversed phase can last through three locally inactive seasons to the next monsoon, are studied by a simple tropical atmosphere–ocean–land model. The model has five boxes representing the South Asian and Australian monsoon regions and the equatorial Indian and western and eastern Pacific Oceans. The five regions interact with each other through the SST–monsoon, evaporation–wind, monsoon–Walker circulation, and wind stress–ocean thermocline feedbacks.

A biennial oscillation emerges in a reasonable parameter regime, with model SST and wind variations resembling many aspects of the observed TBO. Warm SST anomalies (SSTA) in July in the equatorial Indian Ocean cause an increase of surface moisture convergence into South Asia, leading to a stronger monsoon. The monsoon heating on one hand induces a westerly wind anomaly in the Indian Ocean, and on the other hand intensifies a planetary-scale east–west circulation leading to anomalous easterlies over the western and central Pacific. The westerly anomaly over the Indian Ocean decreases the local SST, primarily by evaporation–wind feedback. The easterly anomaly in the central Pacific causes a deepening of the ocean thermocline in the western Pacific therefore increasing the subsurface and surface temperatures. In addition, a modest easterly anomaly in the western Pacific opposes the seasonal mean westerlies so evaporation is reduced. These effects overwhelm those of the cold zonal advection and anomalous upwelling. The net result is warm SSTA persisting in the western Pacific through northern fall, leading to a stronger Australian monsoon.

Meanwhile, the warming in the western Pacific also induces a stronger local Walker cell and thus a surface westerly anomaly over the Indian Ocean. This westerly anomaly helps the cold SSTA to persist through the succeeding seasons, leading to a weaker Asian monsoon in the following summer. During northern winter the westerly anomaly associated with the stronger Australian monsoon, through anomalous ocean downwelling and reduction of evaporation (when the seasonal mean wind is easterly), reinvigorates the warm SSTA in the western Pacific, which has been weakened by the slow cold advection from the eastern Pacific. This further intensifies the eastern Walker cell and helps to keep the eastern Pacific cold.

The authors’ theory indicates that the TBO is an inherent result of the interactions between northern summer and winter monsoon and the tropical Indian and Pacific Oceans. Thus, it is an important component of the tropical ocean–atmosphere interaction system, separate from the El Niño–Southern Oscillation. While the eastern Pacific plays only a passive role in this mechanism, the western Pacific–Maritime Continent region is crucially important. It serves as a bridge in space and time, both in connecting the convection anomaly from the northern summer to the northern winter monsoon and in channeling the feedback of the northern winter monsoon to the Indian Ocean.

Full access
Zhanqing Li and Alexander P. Trishchenko

Abstract

The concept of cloud radiative forcing (CRF) has been widely employed in studying the effects of clouds on the earth’s radiation budget and climate. CRF denotes, in principle, the net influence of cloud alone on the radiation budget of a system. In practice, however, observational determination of CRF is fraught with uncertainties due to factors other than cloud that induce changes in atmospheric background conditions. The most notable variables include aerosol, water vapor, and the data sampling scheme. The impact of these factors on the derivation of CRF and cloud absorption is investigated here by means of modeling and analysis of multiple datasets. Improved estimation of CRF is attempted at the top of the atmosphere (TOA) and at the surface from spatially and temporally collocated ground and satellite measurements for broadband shortwave fluxes. Satellite data employed include pixel measurements from ERBE (1988–90), ScaRaB (1994–95), and CERES (1998), as well as surface data acquired across the Canadian radiation network, the ARM Central Facility site in Oklahoma, the US/NOAA SURFRAD networks, and the world BSRN (WMO) networks. It is found that surface CRF is much more susceptible to the variability in background conditions than TOA CRF. Selection of overly clear sky conditions often leads to significant overestimation of surface CRF, but TOA CRF remains intact or only slightly affected. As a result, the ratio of CRF at the surface and TOA is prone to overestimation. With careful treatments of these effects, the CRF ratio turns out to vary mostly between 0.9 and 1.1, implying approximately the same magnitude of atmospheric absorption under clear-sky and cloudy-sky conditions.

Full access
Jie Chen, François P. Brissette, and Zhi Li

Abstract

This study proposes a new statistical method for postprocessing ensemble weather forecasts using a stochastic weather generator. Key parameters of the weather generator were linked to the ensemble forecast means for both precipitation and temperature, allowing the generation of an infinite number of daily times series that are fully coherent with the ensemble weather forecast. This method was verified through postprocessing reforecast datasets derived from the Global Forecast System (GFS) for forecast leads ranging between 1 and 7 days over two Canadian watersheds in the Province of Quebec. The calibration of the ensemble weather forecasts was based on a cross-validation approach that leaves one year out for validation and uses the remaining years for training the model. The proposed method was compared with a simple bias correction method for ensemble precipitation and temperature forecasts using a set of deterministic and probabilistic metrics. The results show underdispersion and biases for the raw GFS ensemble weather forecasts, which indicated that they were poorly calibrated. The proposed method significantly increased the predictive power of ensemble weather forecasts for forecast leads ranging between 1 and 7 days, and was consistently better than the bias correction method. The ability to generate discrete, autocorrelated daily time series leads to ensemble weather forecasts’ straightforward use in forecasting models commonly used in the fields of hydrology or agriculture. This study further indicates that the calibration of ensemble forecasts for a period up to one week is reasonable for precipitation, and for temperature it could be reasonable for another week.

Full access
Cheng Li, Andrew P. Ingersoll, and Fabiano Oyafuso

Abstract

A new formula is derived for calculating the moist adiabatic temperature profile of an atmosphere consisting of ideal gases with multiple condensing species. This expression unifies various formulas published in the literature and can be generalized to account for chemical reactions. Unlike previous methods, it converges to machine precision independent of mesh size. It accounts for any ratio of condensable vapors to dry gas, from zero to infinity, and for variable heat capacities as a function of temperature. Because the derivation is generic, the new formula is not only applicable to planetary atmospheres in the solar system but also to hot Jupiters and brown dwarfs in which a variety of alkali metals, silicates, and exotic materials condense. It is demonstrated that even though the vapors are ideal gases, they interact in their effects on the moist adiabatic lapse rate. Finally, the authors apply the new thermodynamic model to study the effects of downdrafts on the distribution of minor constituents and the thermal profile in the Galileo probe hot spot. The authors find that the Galileo probe measurements can be interpreted as a strong downdraft that displaces an air parcel from the 1-bar to the 4-bar level (1 bar = 100 000 Pa).

Full access
C-P. Chang, Yongsheng Zhang, and Tim Li

Abstract

The interannual relationship between the East Asian summer monsoon and the tropical Pacific SSTs is studied using rainfall data in the Yangtze River Valley and the NCEP reanalysis for 1951–96. The datasets are also partitioned into two periods, 1951–77 and 1978–96, to study the interdecadal variations of this relationship.

A wet summer monsoon is preceded by a warm equatorial eastern Pacific in the previous winter and followed by a cold equatorial eastern Pacific in the following fall. This relationship involves primarily the rainfall during the pre-Mei-yu/Mei-yu season (May–June) but not the post-Mei-yu season (July–August). In a wet monsoon year, the western North Pacific subtropical ridge is stronger as a result of positive feedback that involves the anomalous Hadley and Walker circulations, an atmospheric Rossby wave response to the western Pacific complementary cooling, and the evaporation–wind feedback. This ridge extends farther to the west from the previous winter to the following fall, resulting in an 850-hPa anomalous anticyclone near the southeast coast of China. This anticyclone 1) blocks the pre-Mei-yu and Mei-yu fronts from moving southward thereby extending the time that the fronts produce stationary rainfall; 2) enhances the pressure gradient to its northwest resulting in a more intense front; and 3) induces anomalous warming of the South China Sea surface through increased downwelling, which leads to a higher moisture supply to the rain area. A positive feedback from the strong monsoon rainfall also appears to occur, leading to an intensified anomalous anticyclone near the monsoon region. This SST–subtropical ridge–monsoon rainfall relationship is observed in both the interannual timescale within each interdecadal period and in the interdecadal scale.

The SST anomalies (SSTAs) change sign in northern spring and resemble a tropospheric biennial oscillation (TBO) pattern during the first interdecadal period (1951–77). In the second interdecadal period (1978–96) the sign change occurs in northern fall and the TBO pattern in the equatorial eastern Pacific SST is replaced by longer timescales. This interdecadal variation of the monsoon–SST relationship results from the interdecadal change of the background state of the coupled ocean–atmosphere system. This difference gives rise to the different degrees of importance of the feedback from the anomalous circulations near the monsoon region to the equatorial eastern Pacific.

In a wet monsoon year, the anomalous easterly winds south of the monsoon-enhanced anomalous anticyclone start to propagate slowly eastward toward the eastern Pacific in May and June, apparently as a result of an atmosphere–ocean coupled wave motion. These anomalous easterlies carry with them a cooling effect on the ocean surface. In 1951–77 this effect is insignificant as the equatorial eastern Pacific SSTAs, already change from warm to cold in northern spring, probably as a result of negative feedback processes discussed in ENSO mechanisms. In 1978–96 the equatorial eastern Pacific has a warmer mean SST. A stronger positive feedback between SSTA and the Walker circulation during a warm phase tends to keep the SSTA warm until northern fall, when the eastward-propagating anomalous easterly winds reach the eastern Pacific and reverse the SSTA.

Full access
C-P. Chang, Yongsheng Zhang, and Tim Li

Abstract

The relationship between the interannual variations of the East Asian summer monsoon and that of the tropical SST shows considerable variations. In this study, rainfall in the southeastern coastal area of China (SEC) during 1951–96 is used to composite the tropical SST, 850-hPa wind, and 500-hPa height. The results relative to the May–June rainfall, which represents most of the SEC summer monsoon rainfall, are compared to the Yangtze River Valley (YRV) rainfall composites. It is shown that strong interdecadal changes in the Pacific may account for the observed variations in the meridional structure of the monsoon–SST relationship. The western Pacific 500-hPa subtropical ridge, which is influenced by the equatorial eastern Pacific SST, is crucial to these variations.

During 1951–77 the SEC wet phase is produced by an anomalous anticyclone in the northern South China Sea, which tends to make the monsoon pre-Mei-yu and Mei-yu fronts quasi-stationary in the general area of both SEC and YRV, and also helps to warm the SST in the northern South China Sea. In this case the monsoon rainfalls in the two regions are in phase.

During 1978–96 the mean equatorial eastern Pacific SST is higher, leading to a stronger and more expansive mean western Pacific subtropical ridge. Its proximity to the SEC region causes the latter to experience a strong interdecadal change, with less mean rainfall than 1951–77. Within the 1978–96 period, the anomalous anticyclone sustaining the YRV wet phase is situated near SEC, suppressing the SEC rainfall. Therefore the SEC and YRV rainfalls become out of phase.

The SEC wet phase in 1978–96 depends on an anomalous 850-hPa cyclone in the East China Sea. This anomalous cyclone, which transports moist air onshore from the east resulting in maximum moisture convergence in SEC, develops when the western Pacific subtropical ridge is weak and displaced equatorward. The flow is more baroclinic and the monsoon fronts are active in the southeast coastal area. In this case the SEC and YRV rainfalls are uncorrelated.

The July and August SEC wet phases show opposite characteristics. The wet July phase depends on anomalous 850-hPa cyclonic circulation in the northern South China Sea (and the East China Sea during 1951–77), which requires a retreat of the western edge of the western Pacific subtropical ridge. The anomalous South China Sea cyclone may be due to more frequent tropical cyclone activity. This is in contrast to the wet August phase, which is associated with anomalous anticyclones in the northern South China Sea and a greater westward extension of the subtropical ridge.

Full access
Y. Li, W. Cai, and E. P. Campbell

Abstract

Rainfall over southwest Western Australia (SWWA; 32°S southward and 118°E westward) has been decreasing over the past decades, putting further constraints on water resources in an already dry area. In this study, daily rainfall over five geographically dispersed and homogenized weather stations within SWWA are analyzed. A peak over threshold method from the extreme value theory is used to model daily rainfall above a given threshold. The Mann–Whitney–Pittitt (change point) test was applied to detect changes in annual, winter (May–October), and summer (November–April) maximum daily rainfall. Change points for winter extreme daily rainfall were found around 1965, based on different individual stations, with the extreme daily rainfall reduced since then. To demonstrate the degree of change in the winter extreme daily rainfall, at 1965 the data were stratified, and generalized Pareto distributions were fitted to the tails of the distributions for daily rainfall in the prechange period of 1930–65 (including 1965) and the postchange period of 1966–2001. The fitted tail distributions also allow the estimation of probabilities and return periods of the daily rainfall extreme. Results show that return periods for the winter extreme daily rainfall have increased after 1965, implying that winter daily rainfall extremes in SWWA are lower after 1965 than they were before. There has been vigorous debate as to what forces the drying trend, that is, whether it is part of multidecadal variability or whether it is driven by secular forcings, such as increasing atmospheric CO2 concentration. In this paper, statistical modeling is also used to identify possible associated changes in atmospheric circulation. It is found that there is a change point near 1965 in a dominant atmospheric circulation mode of the Antarctic Oscillation (AAO). The result offers qualified support for the argument that the AAO may contribute to the drying trend.

Full access
Y. Li, I. M. Navon, P. Courtier, and P. Gauthier

Abstract

An adjoint model is developed for variational data assimilation using the 2D semi-Lagrangian semi-implicit (SLSI) shallow-water equation global model of Bates et al. with special attention being paid to the linearization of the interpolation routines. It is demonstrated that with larger time steps the limit of the validity of the tangent linear model will be curtailed due to the interpolations, especially in regions where sharp gradients in the interpolated variables coupled with strong advective wind occur, a synoptic situation common in the high latitudes. This effect is particularly evident near the pole in the Northern Hemisphere during the winter season. Variational data assimilation experiments of “identical twin” type with observations available only at the end of the assimilation period perform well with this adjoint model. It is confirmed that the computational efficiency of the semi-Lagrangian scheme is preserved during the minimization process, related to the variational data assimilation procedure.

Full access
Xichen Li, David M. Holland, Edwin P. Gerber, and Changhyun Yoo

Abstract

Recent studies link climate change around Antarctica to the sea surface temperature of tropical oceans, with teleconnections from the Pacific, Atlantic, and Indian Oceans making different contributions to Antarctic climate. In this study, the impacts of each ocean basin on the wintertime Southern Hemisphere circulation are identified by comparing simulation results using a comprehensive atmospheric model, an idealized dynamical core model, and a theoretical Rossby wave model. The results herein show that tropical Atlantic Ocean warming, Indian Ocean warming, and eastern Pacific cooling are all able to deepen the Amundsen Sea low located adjacent to West Antarctica, while western Pacific warming increases the pressure to the west of the international date line, encompassing the Ross Sea and regions south of the Tasman Sea. In austral winter, these tropical ocean basins work together linearly to modulate the atmospheric circulation around West Antarctica. Further analyses indicate that these teleconnections critically depend on stationary Rossby wave dynamics and are thus sensitive to the background flow, particularly the subtropical/midlatitude jet. Near these jets, wind shear is amplified, which strengthens the generation of Rossby waves. On the other hand, near the edges of the jets the meridional gradient of the absolute vorticity is also enhanced. As a consequence of the Rossby wave dispersion relationship, the jet edge may reflect stationary Rossby wave trains, serving as a waveguide. The simulation results not only identify the relative roles of each of the tropical ocean basins in the tropical–Antarctica teleconnection, but also suggest that a deeper understanding of teleconnections requires a better estimation of the atmospheric jet structures.

Full access