Search Results

You are looking at 1 - 10 of 19 items for

  • Author or Editor: P. S. K. Liu x
  • Refine by Access: All Content x
Clear All Modify Search
J. Walter Strapp
,
W. R. Leaitch
, and
P. S. K. Liu

Abstract

Comparisons of particle-size distributions measured by Particle Measuring Systems FSSP-300 and PCASP-100X probes through a range of relative humidities reveal that the deiced PCASP-100X probe dries hydrated submicron aerosols before measurement. The FSSP-300 appears to measure the particles in their hydrated state and detects the expected growth in the particle spectrum with increasing relative humidity. Calibration changes fox refractive-index changes with hydration are not applicable to the deiced PCASP-100X probe but are for the FSSP-300. The combined use of the two probes with their differing responses to hydrated aerosols may provide information related to the chemical composition of the aerosol.

Full access
V. K. Jandhyala
,
P. Liu
,
S. B. Fotopoulos
, and
I. B. MacNeill

Abstract

A comprehensive change-point analysis of annual radiosonde temperature measurements collected at the surface, troposphere, tropopause, and lower-stratosphere levels at both the South and North Polar zones has been done. The data from each zone are modeled as a multivariate Gaussian series with a possible change point in both the mean vector as well as the covariance matrix. Prior to carrying out an analysis of the data, a methodology for computing the large sample distribution of the maximum likelihood estimator of the change point is first developed. The Bayesian approach for change-point estimation under conjugate priors is also developed. A simulation study is carried out to compare the maximum likelihood estimator and various Bayesian estimates. Then, a comprehensive change-point analysis under a multivariate framework is carried out on the temperature data for the period 1958–2008. Change detection is based on the likelihood ratio procedure, and change-point estimation is based on the maximum likelihood principle and other Bayesian procedures. The analysis showed strong evidence of change in the correlation between tropopause and lower-stratosphere layers at the South Polar zone subsequent to 1981. The analysis also showed evidence of a cooling effect at the tropopause and lower-stratosphere layers, as well as a warming effect at the surface and troposphere layers at both the South and North Polar zones.

Full access
I. Gultepe
,
T. Kuhn
,
M. Pavolonis
,
C. Calvert
,
J. Gurka
,
A. J. Heymsfield
,
P. S. K. Liu
,
B. Zhou
,
R. Ware
,
B. Ferrier
,
J. Milbrandt
, and
B. Bernstein

Ice fog and frost occur commonly (at least 26% of the time) in the northern latitudes and Arctic regions during winter at temperatures usually less than about –15°C. Ice fog is strongly related to frost formation—a major aviation hazard in the northern latitudes. In fact, it may be considered a more dangerous event than snow because of the stronger aircraft surface adhesion compared to snow particles. In the winter of 2010/11, the Fog Remote Sensing and Modeling–Ice Fog (FRAM-IF) project was organized near Yellowknife International Airport, Northwest Territories, Canada, with the main goals of advancing understanding of ice fog microphysical and visibility characteristics, and improving its prediction using forecast models and remotesensing retrievals. Approximately 40 different sensors were used to measure visibility, precipitation, ice particle spectra, vertical thermodynamic profiles, and ceiling height. Fog coverage and visibility parameters were estimated using both Geostationary Operational Environmental Satellites (GOES) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. During this project, the inversion layer usually was below a height of 1.5 km. High humidity typically was close to the ground, frequently producing ice fog, frost, and light snow precipitation. At low temperatures, snow crystals can be swept away by a very low wind speed (∼1 m s−1). Ice fog during the project was not predicted by any forecast model. These preliminary results in the northern latitudes suggest that ice fog and frost studies, over the Arctic regions, can help us to better understand ice microphysical processes such as ice nucleation, visibility, and parameterizations of ice fog.

Full access
M. Rodell
,
H. K. Beaudoing
,
T. S. L’Ecuyer
,
W. S. Olson
,
J. S. Famiglietti
,
P. R. Houser
,
R. Adler
,
M. G. Bosilovich
,
C. A. Clayson
,
D. Chambers
,
E. Clark
,
E. J. Fetzer
,
X. Gao
,
G. Gu
,
K. Hilburn
,
G. J. Huffman
,
D. P. Lettenmaier
,
W. T. Liu
,
F. R. Robertson
,
C. A. Schlosser
,
J. Sheffield
, and
E. F. Wood

Abstract

This study quantifies mean annual and monthly fluxes of Earth’s water cycle over continents and ocean basins during the first decade of the millennium. To the extent possible, the flux estimates are based on satellite measurements first and data-integrating models second. A careful accounting of uncertainty in the estimates is included. It is applied within a routine that enforces multiple water and energy budget constraints simultaneously in a variational framework in order to produce objectively determined optimized flux estimates. In the majority of cases, the observed annual surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are negligible. Fluxes were poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian islands, leading to reliance on atmospheric analysis estimates. Many of the satellite systems that contributed data have been or will soon be lost or replaced. Models that integrate ground-based and remote observations will be critical for ameliorating gaps and discontinuities in the data records caused by these transitions. Continued development of such models is essential for maximizing the value of the observations. Next-generation observing systems are the best hope for significantly improving global water budget accounting.

Full access
Tristan S. L’Ecuyer
,
H. K. Beaudoing
,
M. Rodell
,
W. Olson
,
B. Lin
,
S. Kato
,
C. A. Clayson
,
E. Wood
,
J. Sheffield
,
R. Adler
,
G. Huffman
,
M. Bosilovich
,
G. Gu
,
F. Robertson
,
P. R. Houser
,
D. Chambers
,
J. S. Famiglietti
,
E. Fetzer
,
W. T. Liu
,
X. Gao
,
C. A. Schlosser
,
E. Clark
,
D. P. Lettenmaier
, and
K. Hilburn

Abstract

New objectively balanced observation-based reconstructions of global and continental energy budgets and their seasonal variability are presented that span the golden decade of Earth-observing satellites at the start of the twenty-first century. In the absence of balance constraints, various combinations of modern flux datasets reveal that current estimates of net radiation into Earth’s surface exceed corresponding turbulent heat fluxes by 13–24 W m−2. The largest imbalances occur over oceanic regions where the component algorithms operate independent of closure constraints. Recent uncertainty assessments suggest that these imbalances fall within anticipated error bounds for each dataset, but the systematic nature of required adjustments across different regions confirm the existence of biases in the component fluxes. To reintroduce energy and water cycle closure information lost in the development of independent flux datasets, a variational method is introduced that explicitly accounts for the relative accuracies in all component fluxes. Applying the technique to a 10-yr record of satellite observations yields new energy budget estimates that simultaneously satisfy all energy and water cycle balance constraints. Globally, 180 W m−2 of atmospheric longwave cooling is balanced by 74 W m−2 of shortwave absorption and 106 W m−2 of latent and sensible heat release. At the surface, 106 W m−2 of downwelling radiation is balanced by turbulent heat transfer to within a residual heat flux into the oceans of 0.45 W m−2, consistent with recent observations of changes in ocean heat content. Annual mean energy budgets and their seasonal cycles for each of seven continents and nine ocean basins are also presented.

Full access
R. A Anthes
,
P. A Bernhardt
,
Y. Chen
,
L. Cucurull
,
K. F. Dymond
,
D. Ector
,
S. B. Healy
,
S.-P. Ho
,
D. C Hunt
,
Y.-H. Kuo
,
H. Liu
,
K. Manning
,
C. McCormick
,
T. K. Meehan
,
W J. Randel
,
C. Rocken
,
W S. Schreiner
,
S. V. Sokolovskiy
,
S. Syndergaard
,
D. C. Thompson
,
K. E. Trenberth
,
T.-K. Wee
,
N. L. Yen
, and
Z Zeng

The radio occultation (RO) technique, which makes use of radio signals transmitted by the global positioning system (GPS) satellites, has emerged as a powerful and relatively inexpensive approach for sounding the global atmosphere with high precision, accuracy, and vertical resolution in all weather and over both land and ocean. On 15 April 2006, the joint Taiwan-U.S. Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC)/Formosa Satellite Mission 3 (COSMIC/FORMOSAT-3, hereafter COSMIC) mission, a constellation of six microsatellites, was launched into a 512-km orbit. After launch the satellites were gradually deployed to their final orbits at 800 km, a process that took about 17 months. During the early weeks of the deployment, the satellites were spaced closely, offering a unique opportunity to verify the high precision of RO measurements. As of September 2007, COSMIC is providing about 2000 RO soundings per day to support the research and operational communities. COSMIC RO data are of better quality than those from the previous missions and penetrate much farther down into the troposphere; 70%–90% of the soundings reach to within 1 km of the surface on a global basis. The data are having a positive impact on operational global weather forecast models.

With the ability to penetrate deep into the lower troposphere using an advanced open-loop tracking technique, the COSMIC RO instruments can observe the structure of the tropical atmospheric boundary layer. The value of RO for climate monitoring and research is demonstrated by the precise and consistent observations between different instruments, platforms, and missions. COSMIC observations are capable of intercalibrating microwave measurements from the Advanced Microwave Sounding Unit (AMSU) on different satellites. Finally, unique and useful observations of the ionosphere are being obtained using the RO receiver and two other instruments on the COSMIC satellites, the tiny ionosphere photometer (TIP) and the tri-band beacon.

Full access
J.-P. Vernier
,
T. D. Fairlie
,
T. Deshler
,
M. Venkat Ratnam
,
H. Gadhavi
,
B. S. Kumar
,
M. Natarajan
,
A. K. Pandit
,
S. T. Akhil Raj
,
A. Hemanth Kumar
,
A. Jayaraman
,
A. K. Singh
,
N. Rastogi
,
P. R. Sinha
,
S. Kumar
,
S. Tiwari
,
T. Wegner
,
N. Baker
,
D. Vignelles
,
G. Stenchikov
,
I. Shevchenko
,
J. Smith
,
K. Bedka
,
A. Kesarkar
,
V. Singh
,
J. Bhate
,
V. Ravikiran
,
M. Durga Rao
,
S. Ravindrababu
,
A. Patel
,
H. Vernier
,
F. G. Wienhold
,
H. Liu
,
T. N. Knepp
,
L. Thomason
,
J. Crawford
,
L. Ziemba
,
J. Moore
,
S. Crumeyrolle
,
M. Williamson
,
G. Berthet
,
F. Jégou
, and
J.-B. Renard

Abstract

We describe and show results from a series of field campaigns that used balloonborne instruments launched from India and Saudi Arabia during the summers 2014–17 to study the nature, formation, and impacts of the Asian Tropopause Aerosol Layer (ATAL). The campaign goals were to i) characterize the optical, physical, and chemical properties of the ATAL; ii) assess its impacts on water vapor and ozone; and iii) understand the role of convection in its formation. To address these objectives, we launched 68 balloons from four locations, one in Saudi Arabia and three in India, with payload weights ranging from 1.5 to 50 kg. We measured meteorological parameters; ozone; water vapor; and aerosol backscatter, concentration, volatility, and composition in the upper troposphere and lower stratosphere (UTLS) region. We found peaks in aerosol concentrations of up to 25 cm–3 for radii > 94 nm, associated with a scattering ratio at 940 nm of ∼1.9 near the cold-point tropopause. During medium-duration balloon flights near the tropopause, we collected aerosols and found, after offline ion chromatography analysis, the dominant presence of nitrate ions with a concentration of about 100 ng m–3. Deep convection was found to influence aerosol loadings 1 km above the cold-point tropopause. The Balloon Measurements of the Asian Tropopause Aerosol Layer (BATAL) project will continue for the next 3–4 years, and the results gathered will be used to formulate a future National Aeronautics and Space Administration–Indian Space Research Organisation (NASA–ISRO) airborne campaign with NASA high-altitude aircraft.

Full access
D. A. Knopf
,
K. R. Barry
,
T. A. Brubaker
,
L. G. Jahl
,
K. A. Jankowski
,
J. Li
,
Y. Lu
,
L. W. Monroe
,
K. A. Moore
,
F. A. Rivera-Adorno
,
K. A. Sauceda
,
Y. Shi
,
J. M. Tomlin
,
H. S. K. Vepuri
,
P. Wang
,
N. N. Lata
,
E. J. T. Levin
,
J. M. Creamean
,
T. C. J. Hill
,
S. China
,
P. A. Alpert
,
R. C. Moffet
,
N. Hiranuma
,
R. C. Sullivan
,
A. M. Fridlind
,
M. West
,
N. Riemer
,
A. Laskin
,
P. J. DeMott
, and
X. Liu

Abstract

Prediction of ice formation in clouds presents one of the grand challenges in the atmospheric sciences. Immersion freezing initiated by ice-nucleating particles (INPs) is the dominant pathway of primary ice crystal formation in mixed-phase clouds, where supercooled water droplets and ice crystals coexist, with important implications for the hydrological cycle and climate. However, derivation of INP number concentrations from an ambient aerosol population in cloud-resolving and climate models remains highly uncertain. We conducted an aerosol–ice formation closure pilot study using a field-observational approach to evaluate the predictive capability of immersion freezing INPs. The closure study relies on collocated measurements of the ambient size-resolved and single-particle composition and INP number concentrations. The acquired particle data serve as input in several immersion freezing parameterizations, which are employed in cloud-resolving and climate models, for prediction of INP number concentrations. We discuss in detail one closure case study in which a front passed through the measurement site, resulting in a change of ambient particle and INP populations. We achieved closure in some circumstances within uncertainties, but we emphasize the need for freezing parameterization of potentially missing INP types and evaluation of the choice of parameterization to be employed. Overall, this closure pilot study aims to assess the level of parameter details and measurement strategies needed to achieve aerosol–ice formation closure. The closure approach is designed to accurately guide immersion freezing schemes in models, and ultimately identify the leading causes for climate model bias in INP predictions.

Full access
C. L. Reddington
,
K. S. Carslaw
,
P. Stier
,
N. Schutgens
,
H. Coe
,
D. Liu
,
J. Allan
,
J. Browse
,
K. J. Pringle
,
L. A. Lee
,
M. Yoshioka
,
J. S. Johnson
,
L. A. Regayre
,
D. V. Spracklen
,
G. W. Mann
,
A. Clarke
,
M. Hermann
,
S. Henning
,
H. Wex
,
T. B. Kristensen
,
W. R. Leaitch
,
U. Pöschl
,
D. Rose
,
M. O. Andreae
,
J. Schmale
,
Y. Kondo
,
N. Oshima
,
J. P. Schwarz
,
A. Nenes
,
B. Anderson
,
G. C. Roberts
,
J. R. Snider
,
C. Leck
,
P. K. Quinn
,
X. Chi
,
A. Ding
,
J. L. Jimenez
, and
Q. Zhang

Abstract

The largest uncertainty in the historical radiative forcing of climate is caused by changes in aerosol particles due to anthropogenic activity. Sophisticated aerosol microphysics processes have been included in many climate models in an effort to reduce the uncertainty. However, the models are very challenging to evaluate and constrain because they require extensive in situ measurements of the particle size distribution, number concentration, and chemical composition that are not available from global satellite observations. The Global Aerosol Synthesis and Science Project (GASSP) aims to improve the robustness of global aerosol models by combining new methodologies for quantifying model uncertainty, to create an extensive global dataset of aerosol in situ microphysical and chemical measurements, and to develop new ways to assess the uncertainty associated with comparing sparse point measurements with low-resolution models. GASSP has assembled over 45,000 hours of measurements from ships and aircraft as well as data from over 350 ground stations. The measurements have been harmonized into a standardized format that is easily used by modelers and nonspecialist users. Available measurements are extensive, but they are biased to polluted regions of the Northern Hemisphere, leaving large pristine regions and many continental areas poorly sampled. The aerosol radiative forcing uncertainty can be reduced using a rigorous model–data synthesis approach. Nevertheless, our research highlights significant remaining challenges because of the difficulty of constraining many interwoven model uncertainties simultaneously. Although the physical realism of global aerosol models still needs to be improved, the uncertainty in aerosol radiative forcing will be reduced most effectively by systematically and rigorously constraining the models using extensive syntheses of measurements.

Open access
Bruce A. Wielicki
,
D. F. Young
,
M. G. Mlynczak
,
K. J. Thome
,
S. Leroy
,
J. Corliss
,
J. G. Anderson
,
C. O. Ao
,
R. Bantges
,
F. Best
,
K. Bowman
,
H. Brindley
,
J. J. Butler
,
W. Collins
,
J. A. Dykema
,
D. R. Doelling
,
D. R. Feldman
,
N. Fox
,
X. Huang
,
R. Holz
,
Y. Huang
,
Z. Jin
,
D. Jennings
,
D. G. Johnson
,
K. Jucks
,
S. Kato
,
D. B. Kirk-Davidoff
,
R. Knuteson
,
G. Kopp
,
D. P. Kratz
,
X. Liu
,
C. Lukashin
,
A. J. Mannucci
,
N. Phojanamongkolkij
,
P. Pilewskie
,
V. Ramaswamy
,
H. Revercomb
,
J. Rice
,
Y. Roberts
,
C. M. Roithmayr
,
F. Rose
,
S. Sandford
,
E. L. Shirley
,
Sr. W. L. Smith
,
B. Soden
,
P. W. Speth
,
W. Sun
,
P. C. Taylor
,
D. Tobin
, and
X. Xiong

The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5–50 μm), the spectrum of solar radiation reflected by the Earth and its atmosphere (320–2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a “NIST [National Institute of Standards and Technology] in orbit.” CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

Full access