Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: P. van Delst x
  • Refine by Access: All Content x
Clear All Modify Search
J. Le Marshall
,
J . Jung
,
J. Derber
,
M. Chahine
,
R. Treadon
,
S J. Lord
,
M Goldberg
,
W Wolf
,
H C. Liu
,
J Joiner
,
J. Woollen
,
R. Todling
,
P. van Delst
, and
Y. Tahara
Full access
B. Soden
,
S. Tjemkes
,
J. Schmetz
,
R. Saunders
,
J. Bates
,
B. Ellingson
,
R. Engelen
,
L. Garand
,
D. Jackson
,
G. Jedlovec
,
T. Kleespies
,
D. Randel
,
P. Rayer
,
E. Salathe
,
D. Schwarzkopf
,
N. Scott
,
B. Sohn
,
S. de Souza-Machado
,
L. Strow
,
D. Tobin
,
D. Turner
,
P. van Delst
, and
T. Wehr

An intercomparison of radiation codes used in retrieving upper-tropospheric humidity (UTH) from observations in the ν2 (6.3 μm) water vapor absorption band was performed. This intercomparison is one part of a coordinated effort within the Global Energy and Water Cycle Experiment Water Vapor Project to assess our ability to monitor the distribution and variations of upper-tropospheric moisture from spaceborne sensors. A total of 23 different codes, ranging from detailed line-by-line (LBL) models, to coarser-resolution narrowband (NB) models, to highly parameterized single-band (SB) models participated in the study. Forward calculations were performed using a carefully selected set of temperature and moisture profiles chosen to be representative of a wide range of atmospheric conditions. The LBL model calculations exhibited the greatest consistency with each other, typically agreeing to within 0.5 K in terms of the equivalent blackbody brightness temperature (Tb ). The majority of NB and SB models agreed to within ±1 K of the LBL models, although a few older models exhibited systematic Tb biases in excess of 2 K. A discussion of the discrepancies between various models, their association with differences in model physics (e.g., continuum absorption), and their implications for UTH retrieval and radiance assimilation is presented.

Full access