Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Pablo Ortega x
  • Refine by Access: All Content x
Clear All Modify Search
Juan C. Acosta Navarro, Pablo Ortega, Javier García-Serrano, Virginie Guemas, Etienne Tourigny, Rubén Cruz-García, François Massonnet, and Francisco J. Doblas-Reyes
Open access
Dragana Bojovic, Roberto Bilbao, Leandro B. Díaz, Markus Donat, Pablo Ortega, Yohan Ruprich-Robert, Balakrishnan Solaraju-Murali, Marta Terrado, Deborah Verfaillie, and Francisco Doblas-Reyes

EUCP WORKSHOP ON SCIENTIFIC KNOWLEDGE GAPS RELATED TO DECADAL CLIMATE PREDICTION

What: The Horizon 2020 (H2020)-funded project European Climate Prediction System (EUCP) and Barcelona Supercomputing Center’s (BSC) Earth Sciences Department organized the workshop to discuss pertinent issues related to development and application of decadal climate prediction. The organizers invited participants of the larger and parallel CMIP6 Workshop and all other interested scientists, and as a result, the workshop reached the capacity of the venue, with 50 participants, experts in this field.

When: 25 March 2019

Where: Barcelona, Spain

Decadal climate prediction is a relatively new line of

Free access
Ed Hawkins, Pablo Ortega, Emma Suckling, Andrew Schurer, Gabi Hegerl, Phil Jones, Manoj Joshi, Timothy J. Osborn, Valérie Masson-Delmotte, Juliette Mignot, Peter Thorne, and Geert Jan van Oldenborgh

Abstract

The United Nations Framework Convention on Climate Change (UNFCCC) process agreed in Paris to limit global surface temperature rise to “well below 2°C above pre-industrial levels.” But what period is preindustrial? Somewhat remarkably, this is not defined within the UNFCCC’s many agreements and protocols. Nor is it defined in the IPCC’s Fifth Assessment Report (AR5) in the evaluation of when particular temperature levels might be reached because no robust definition of the period exists. Here we discuss the important factors to consider when defining a preindustrial period, based on estimates of historical radiative forcings and the availability of climate observations. There is no perfect period, but we suggest that 1720–1800 is the most suitable choice when discussing global temperature limits. We then estimate the change in global average temperature since preindustrial using a range of approaches based on observations, radiative forcings, global climate model simulations, and proxy evidence. Our assessment is that this preindustrial period was likely 0.55°–0.80°C cooler than 1986–2005 and that 2015 was likely the first year in which global average temperature was more than 1°C above preindustrial levels. We provide some recommendations for how this assessment might be improved in the future and suggest that reframing temperature limits with a modern baseline would be inherently less uncertain and more policy relevant.

Open access