Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Paloma Borque x
  • Refine by Access: All Content x
Clear All Modify Search
Paloma Borque, Pavlos Kollias, and Scott Giangrande

Abstract

Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large-drop formation (weather radar “first echo”). These measurements also complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2D) along-wind range–height indicator observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning Atmospheric Radiation Measurement Program (ARM) cloud radar (SACR) at the U.S. Department of Energy (DOE)–ARM Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger-scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous small nonprecipitating cloud elements. A new cloud identification and tracking algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2D observations (30 s) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud-element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived nonprecipitating clouds having an apparent life cycle shorter than 15 min. The advantages and disadvantages of cloud tracking using an SACR are discussed.

Full access
Paloma Borque, Paola Salio, Matilde Nicolini, and Yanina García Skabar

Abstract

The present work focuses on the study of the environmental conditions preceding the development of a group of subtropical mesoscale convective systems over central and northern Argentina on 6–7 February 2003 during the South American Low Level Jet Experiment. This period was characterized by an extreme northerly low-level flow along the eastern Andes foothills [South American low-level jet (SALLJ)]. The entire studied episode was dominated by the presence of a very unstable air mass over northern Argentina and a frontal zone near 40°S. The SALLJ generated an important destabilization of the atmosphere due to the strong humidity and differential temperature advection. Orography provided an extra lifting motion to the configuration of the regional wind field, which was efficient in forcing the initiation of convection. Once convection developed, it moved and regenerated in regions where the convective instability was horizontally homogeneous and stronger.

Full access
Paloma Borque, Edward P. Luke, Pavlos Kollias, and Fan Yang

Abstract

Turbulence and drizzle-rate measurements from a large dataset of marine and continental low stratiform clouds are presented. Turbulence peaks at cloud base over land and near cloud top over the ocean. For both regions, eddy dissipation rate values of 10−5–10−2 m2 s−3 are observed. Surface-based measurements of cloud condensation nuclei number concentration N CCN and liquid water path (LWP) are used to estimate the precipitation susceptibility S 0. Results show that positive S 0 values are found at low turbulence, consistent with the principle that aerosols suppress precipitation formation, whereas S 0 is smaller, and can be negative, in a more turbulent environment. Under similar macrophysical conditions, especially for medium to high LWP, high (low) turbulence is likely to lessen (promote) the suppression effect of high N CCN on precipitation. Overall, the turbulent effect on S 0 is stronger in continental than marine stratiform clouds. These observational findings are consistent with recent analytical prediction for a turbulence-broadening effect on cloud droplet size distribution.

Full access
Paloma Borque, Kirstin J. Harnos, Stephen W. Nesbitt, and Greg M. McFarquhar

Abstract

Satellite retrieval algorithms and model microphysical parameterizations require guidance from observations to improve the representation of ice-phase microphysical quantities and processes. Here, a parameterization for ice-phase particle size distributions (PSDs) is developed using in situ measurements of cloud microphysical properties collected during the Global Precipitation Measurement (GPM) Cold-Season Precipitation Experiment (GCPEx). This parameterization takes advantage of the relation between the gamma-shape parameter μ and the mass-weighted mean diameter D m of the ice-phase PSD sampled during GCPEx. The retrieval of effective reflectivity Z e and ice water content (IWC) from the reconstructed PSD using the μD m relationship was tested with independent measurements of Z e and IWC and overall leads to a mean error of 8% in both variables. This represents an improvement when compared with errors using the Field et al. parameterization of 10% in IWC and 37% in Z e. Current radar precipitation retrieval algorithms from GPM assume that the PSD follows a gamma distribution with μ = 3. This assumption leads to a mean overestimation of 5% in the retrieved Z e, whereas applying the μD m relationship found here reduces this bias to an overestimation of less than 1%. Proper selection of the a and b coefficients in the mass–dimension relationship is also of crucial importance for retrievals. An inappropriate selection of a and b, even from values observed in previous studies in similar environments and cloud types, can lead to more than 100% bias in IWC and Z e for the ice-phase particles analyzed here.

Full access
Paloma Borque, Stephen W. Nesbitt, Robert J. Trapp, Sonia Lasher-Trapp, and Mariko Oue

Abstract

Convectively generated cold pools are important to the Earth system as they exert strong controls on deep convective-storm initiation, intensity, and life cycle. Despite their importance, efforts to introduce such cold pool controls into weather and climate models lack guidance and/or physical constraints from cold pool observations. This work presents a detailed, purely observational analysis of a cold pool event that took place on 23–24 May 2011 in north-central Oklahoma. The characteristics of the cold pool, and the spatiotemporal evolution of the hydrometeors and dynamics in the proximity of the cold pool, are studied with high-resolution observations. The unprecedented dataset used in this work to study cold pool characteristics includes an enhanced network of surface weather stations, a high-temporal-frequency sounding array, and the NEXRAD and Atmospheric Radiation Measurement (ARM) Southern Great Plains radar networks. The potential use of NEXRAD surveillance scans to estimate height and propagation speed of the leading edge of the cold pool (LECP) is presented in this work. Manual identification and tracking of the LECP from NEXRAD imagery shows a spatial and temporal heterogeneity of the LECP properties. Surprisingly, over its detected life cycle, the LECP speed remains almost constant, even though the strength of the cold pool diminishes in time and its height varies. Radar analysis shows that pulses of graupel and hail within downdrafts in the convective system generating the cold pool appeared to be related to temporary increases in the LECP height.

Free access
Pavlos Kollias, Ieng Jo, Paloma Borque, Aleksandra Tatarevic, Katia Lamer, Nitin Bharadwaj, Kevin Widener, Karen Johnson, and Eugene E. Clothiaux

Abstract

The scanning Atmospheric Radiation Measurement (ARM) Program cloud radars (SACRs) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20–30-km radius of the ARM fixed and mobile sites. Here, the postprocessing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the hemispherical sky range–height indicator SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step toward the utilization of SACR measurements for cloud research.

Full access
Adam C. Varble, Stephen W. Nesbitt, Paola Salio, Joseph C. Hardin, Nitin Bharadwaj, Paloma Borque, Paul J. DeMott, Zhe Feng, Thomas C. J. Hill, James N. Marquis, Alyssa Matthews, Fan Mei, Rusen Öktem, Vagner Castro, Lexie Goldberger, Alexis Hunzinger, Kevin R. Barry, Sonia M. Kreidenweis, Greg M. McFarquhar, Lynn A. McMurdie, Mikhail Pekour, Heath Powers, David M. Romps, Celeste Saulo, Beat Schmid, Jason M. Tomlinson, Susan C. van den Heever, Alla Zelenyuk, Zhixiao Zhang, and Edward J. Zipser

Abstract

The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign was designed to improve understanding of orographic cloud life cycles in relation to surrounding atmospheric thermodynamic, flow, and aerosol conditions. The deployment to the Sierras de Córdoba range in north-central Argentina was chosen because of very frequent cumulus congestus, deep convection initiation, and mesoscale convective organization uniquely observable from a fixed site. The C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar was deployed for the first time with over 50 ARM Mobile Facility atmospheric state, surface, aerosol, radiation, cloud, and precipitation instruments between October 2018 and April 2019. An intensive observing period (IOP) coincident with the RELAMPAGO field campaign was held between 1 November and 15 December during which 22 flights were performed by the ARM Gulfstream-1 aircraft. A multitude of atmospheric processes and cloud conditions were observed over the 7-month campaign, including numerous orographic cumulus and stratocumulus events; new particle formation and growth producing high aerosol concentrations; drizzle formation in fog and shallow liquid clouds; very low aerosol conditions following wet deposition in heavy rainfall; initiation of ice in congestus clouds across a range of temperatures; extreme deep convection reaching 21-km altitudes; and organization of intense, hail-containing supercells and mesoscale convective systems. These comprehensive datasets include many of the first ever collected in this region and provide new opportunities to study orographic cloud evolution and interactions with meteorological conditions, aerosols, surface conditions, and radiation in mountainous terrain.

Full access
Adam C. Varble, Stephen W. Nesbitt, Paola Salio, Joseph C. Hardin, Nitin Bharadwaj, Paloma Borque, Paul J. DeMott, Zhe Feng, Thomas C. J. Hill, James N. Marquis, Alyssa Matthews, Fan Mei, Rusen Öktem, Vagner Castro, Lexie Goldberger, Alexis Hunzinger, Kevin R. Barry, Sonia M. Kreidenweis, Greg M. McFarquhar, Lynn A. McMurdie, Mikhail Pekour, Heath Powers, David M. Romps, Celeste Saulo, Beat Schmid, Jason M. Tomlinson, Susan C. van den Heever, Alla Zelenyuk, Zhixiao Zhang, and Edward J. Zipser

Abstract

The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign was designed to improve understanding of orographic cloud life cycles in relation to surrounding atmospheric thermodynamic, flow, and aerosol conditions. The deployment to the Sierras de Córdoba range in north-central Argentina was chosen because of very frequent cumulus congestus, deep convection initiation, and mesoscale convective organization uniquely observable from a fixed site. The C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar was deployed for the first time with over 50 ARM Mobile Facility atmospheric state, surface, aerosol, radiation, cloud, and precipitation instruments between October 2018 and April 2019. An intensive observing period (IOP) coincident with the RELAMPAGO field campaign was held between 1 November and 15 December during which 22 flights were performed by the ARM Gulfstream-1 aircraft.

A multitude of atmospheric processes and cloud conditions were observed over the 7-month campaign, including: numerous orographic cumulus and stratocumulus events; new particle formation and growth producing high aerosol concentrations; drizzle formation in fog and shallow liquid clouds; very low aerosol conditions following wet deposition in heavy rainfall; initiation of ice in congestus clouds across a range of temperatures; extreme deep convection reaching 21-km altitudes; and organization of intense, hail-containing supercells and mesoscale convective systems. These comprehensive datasets include many of the first ever collected in this region and provide new opportunities to study orographic cloud evolution and interactions with meteorological conditions, aerosols, surface conditions, and radiation in mountainous terrain.

Full access