Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Panxi Dai x
  • All content x
Clear All Modify Search
Panxi Dai and Benkui Tan


Through a cluster analysis of daily NCEP–NCAR reanalysis data, this study demonstrates that the Arctic Oscillation (AO), defined as the leading empirical orthogonal function (EOF) of 250-hPa geopotential height anomalies, is not a unique pattern but a continuum that can be well approximated by five discrete, representative AO-like patterns. These AO-like patterns grow simultaneously from disturbances in the North Pacific, the North Atlantic, and the Arctic, and both the feedback from the high-frequency eddies in the North Pacific and North Atlantic and propagation of the low-frequency wave trains from the North Pacific across North America into the North Atlantic play important roles in the pattern formation. Furthermore, it is shown that the structures and frequencies of occurrence of the five AO-like patterns are significantly modulated by El Niño–Southern Oscillation (ENSO). Warm (cold) ENSO enhances the negative (positive) AO phase, compared with ENSO neutral winters. Finally, the surface weather effects of these AO-like patterns and their implications for the AO-related weather prediction and the AO-North Atlantic Oscillation (NAO) relationship are discussed.

Full access
Panxi Dai and Ji Nie


This paper presents a global picture of the dynamic processes and synoptic characteristics of extratropical extreme precipitation events (EPEs), defined as annual maximum daily precipitation averaged over 7.5° × 7.5° regional boxes. Based on the quasigeostrophic omega equation, extreme precipitation can be decomposed into components forced by large-scale adiabatic disturbances and amplified by diabatic heating feedback. The spatial distribution of the diabatic feedback parameter is largely controlled by atmospheric precipitable water and captured by a simple model. Most spatial heterogeneities of EPEs in the middle and high latitudes are due to the spatial variations of large-scale adiabatic forcing. The adiabatic component includes the processes of vorticity advection, in which the synoptic vorticity advection by background wind dominates; temperature advection, in which the total meridional temperature advection by synoptic wind dominates; and boundary forcing. The synoptic patterns of EPEs in all extratropical regions can be classified into six clusters using the self-organizing map method: two clusters in low latitudes and four clusters in middle and high latitudes. Synoptic disturbances are characterized by strong pressure anomalies throughout the troposphere over the coastal regions and oceans and feature upper-level shortwave disturbances and a large westward tilt with height over land. Synoptic configurations favor moisture transport from ocean to land over coastal regions.

Restricted access