Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Paola V. Salio x
  • Refine by Access: All Content x
Clear All Modify Search
Jake P. Mulholland, Stephen W. Nesbitt, Robert J. Trapp, Kristen L. Rasmussen, and Paola V. Salio

Abstract

Satellite observations have revealed that some of the world’s most intense deep convective storms occur near the Sierras de Córdoba, Argentina, South America. A C-band, dual-polarization Doppler weather radar recently installed in the city of Córdoba in 2015 is now providing a high-resolution radar perspective of this intense convection. Radar data from two austral spring and summer seasons (2015–17) are used to document the convective life cycle, while reanalysis data are utilized to construct storm environments across this region. Most of the storms in the region are multicellular and initiate most frequently during the early afternoon and late evening hours near and just east of the Sierras de Córdoba. Annually, the peak occurrence of these storms is during the austral summer months of December, January, and February. These Córdoba radar-based statistics are shown to be comparable to statistics derived from Tropical Rainfall Measuring Mission Precipitation Radar data. While generally similar to storm environments in the United States, storm environments in central Argentina tend to be characterized by larger CAPE and weaker low-level vertical wind shear. One of the more intriguing results is the relatively fast transition from first storms to larger mesoscale convective systems, compared with locations in the central United States.

Full access
Stephen W. Nesbitt, Paola V. Salio, Eldo Ávila, Phillip Bitzer, Lawrence Carey, V. Chandrasekar, Wiebke Deierling, Francina Dominguez, Maria Eugenia Dillon, C. Marcelo Garcia, David Gochis, Steven Goodman, Deanna A. Hence, Karen A. Kosiba, Matthew R. Kumjian, Timothy Lang, Lorena Medina Luna, James Marquis, Robert Marshall, Lynn A. McMurdie, Ernani de Lima Nascimento, Kristen L. Rasmussen, Rita Roberts, Angela K. Rowe, Juan José Ruiz, Eliah F.M.T. São Sabbas, A. Celeste Saulo, Russ S. Schumacher, Yanina Garcia Skabar, Luiz Augusto Toledo Machado, Robert J. Trapp, Adam C. Varble, James Wilson, Joshua Wurman, Edward J. Zipser, Ivan Arias, Hernán Bechis, and Maxwell A. Grover

Abstract

This article provides an overview of the experimental design, execution, education and public outreach, data collection, and initial scientific results from the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. RELAMPAGO was a major field campaign conducted in the Córdoba and Mendoza provinces in Argentina and western Rio Grande do Sul State in Brazil in 2018–19 that involved more than 200 scientists and students from the United States, Argentina, and Brazil. This campaign was motivated by the physical processes and societal impacts of deep convection that frequently initiates in this region, often along the complex terrain of the Sierras de Córdoba and Andes, and often grows rapidly upscale into dangerous storms that impact society. Observed storms during the experiment produced copious hail, intense flash flooding, extreme lightning flash rates, and other unusual lightning phenomena, but few tornadoes. The five distinct scientific foci of RELAMPAGO—convection initiation, severe weather, upscale growth, hydrometeorology, and lightning and electrification—are described, as are the deployment strategies to observe physical processes relevant to these foci. The campaign’s international cooperation, forecasting efforts, and mission planning strategies enabled a successful data collection effort. In addition, the legacy of RELAMPAGO in South America, including extensive multinational education, public outreach, and social media data gathering associated with the campaign, is summarized.

Full access
Stephen W. Nesbitt, Paola V. Salio, Eldo Ávila, Phillip Bitzer, Lawrence Carey, V. Chandrasekar, Wiebke Deierling, Francina Dominguez, Maria Eugenia Dillon, C. Marcelo Garcia, David Gochis, Steven Goodman, Deanna A. Hence, Karen A. Kosiba, Matthew R. Kumjian, Timothy Lang, Lorena Medina Luna, James Marquis, Robert Marshall, Lynn A. McMurdie, Ernani Lima Nascimento, Kristen L. Rasmussen, Rita Roberts, Angela K. Rowe, Juan José Ruiz, Eliah F.M.T. São Sabbas, A. Celeste Saulo, Russ S. Schumacher, Yanina Garcia Skabar, Luiz Augusto Toledo Machado, Robert J. Trapp, Adam Varble, James Wilson, Joshua Wurman, Edward J. Zipser, Ivan Arias, Hernán Bechis, and Maxwell A. Grover

Abstract

This article provides an overview of the experimental design, execution, education and public outreach, data collection, and initial scientific results from the Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. RELAMPAGO was a major field campaign conducted in Córdoba and Mendoza provinces in Argentina, and western Rio Grande do Sul State in Brazil in 2018-2019 that involved more than 200 scientists and students from the US, Argentina, and Brazil. This campaign was motivated by the physical processes and societal impacts of deep convection that frequently initiates in this region, often along the complex terrain of the Sierras de Córdoba and Andes, and often grows rapidly upscale into dangerous storms that impact society. Observed storms during the experiment produced copious hail, intense flash flooding, extreme lightning flash rates and other unusual lightning phenomena, but few tornadoes. The 5 distinct scientific foci of RELAMPAGO: convection initiation, severe weather, upscale growth, hydrometeorology, and lightning and electrification are described, as are the deployment strategies to observe physical processes relevant to these foci. The campaign’s international cooperation, forecasting efforts, and mission planning strategies enabled a successful data collection effort. In addition, the legacy of RELAMPAGO in South America, including extensive multi-national education, public outreach, and social media data-gathering associated with the campaign, is summarized.

Full access