Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Pascale Bouruet-Aubertot x
  • All content x
Clear All Modify Search
Pascale Bouruet-Aubertot, Hans van Haren, and M. Pascale Lelong


Deep-ocean high-resolution moored temperature data are analyzed with a focus on superbuoyant frequencies. A local Taylor hypothesis based on the horizontal velocity averaged over 2 h is used to infer horizontal wavenumber spectra of temperature variance. The inertial subrange extends over fairly low horizontal wavenumbers, typically within 2 × 10−3 and 2 × 10−1 cycles per minute (cpm). It is therefore interpreted as a stratified inertial subrange for most of this wavenumber interval, whereas in some cases the convective inertial subrange is resolved as well. Kinetic energy dissipation rate ϵ is inferred using theoretical expressions for the stratified inertial subrange. A wide range of values within 10−9 and 4 × 10−7 m2 s−3 is obtained for time periods either dominated by semidiurnal tides or by significant subinertial variability. A scaling for ϵ that depends on the potential energy within the inertio-gravity waves (IGW) frequency band PEIGW and the buoyancy frequency N is proposed for these two cases. When semidiurnal tides dominate, ϵ ≃ (PEIGW N)3/2, whereas ϵ ≃ PEIGW N in the presence of significant subinertial variability. This result is obtained for energy levels ranging from 1 to 30 times the Garrett–Munk energy level and is in contrast with classical finescale parameterization in which ϵ ∼ (PEIGW)2 that applies far from energy sources. The specificities of the stratified bottom boundary layer, namely a weak stratification, may account for this difference.

Full access
M.-Pascale Lelong, Yannis Cuypers, and Pascale Bouruet-Aubertot


Motivated by observations of a strong near-inertial wave signal at the base of the semipermanent anticyclonic Cyprus Eddy during the 2010 Biogeochemistry from the Oligotrophic to the Ultraoligotrophic Mediterranean (BOUM) experiment, a numerical study is performed to investigate the role of near-inertial/eddy interactions in energy transfer out of the mixed layer. A hybrid temporal–spatial decomposition is used to split all variables into three independent components: slow (eddy) and fast (inertial oscillations + waves), which proves useful in understanding the flow dynamics. Through a detailed energy budget analysis, we find that the anticyclonic eddy acts as a catalyst in transferring wind-driven inertial energy to propagating waves. While the eddy sets the spatial scales of the waves, it does not participate in any energy exchange. Near-inertial propagation through the eddy core results in the formation of multiple critical levels with the largest accumulation of wave energy at the base of the eddy. A complementary ray-tracing analysis reveals critical-level formation when the surface-confined inertial rays originate within the negative vorticity region. In contrast, rays originating outside this region focus at the base of the eddy and can propagate at depth.

Restricted access
Ilker Fer, Anthony Bosse, Bruno Ferron, and Pascale Bouruet-Aubertot


Ocean microstructure, current, and hydrography observations from June 2016 are used to characterize the turbulence structure of the Lofoten Basin eddy (LBE), a long-lived anticyclone in the Norwegian Sea. The LBE had an azimuthal peak velocity of 0.8 m s−1 at 950-m depth and 22-km radial distance from its center and a core relative vorticity reaching −0.7f (f is the local Coriolis parameter). When contrasted to a reference station in a relatively quiescent part of the basin, the LBE was significantly turbulent between 750 and 2000 m, exceeding the dissipation rates ε in the reference station by up to two orders of magnitude. Dissipation rates were elevated particularly in the core and at the rim below the swirl velocity maximum, reaching 10−8 W kg−1. The sources of energy for the observed turbulence are the background shear (gradient Richardson number less than unity) and the subinertial energy trapped by the negative vorticity of the eddy. Idealized ray-tracing calculations show that the vertical and lateral changes in stratification, shear, and vorticity allow subinertial waves to be trapped within the LBE. Spectral analysis shows increased high-wavenumber clockwise-polarized shear variance in the core and rim regions, consistent with downward-propagating near-inertial waves (vertical wavelengths of order 100 m and energy levels 3 to 10 times the canonical open-ocean level). The energetic packets with a distinct downward energy propagation are typically accompanied with an increase in dissipation levels. Based on these summer observations, the time scale to drain the volume-integrated total energy of the LBE is 14 years.

Open access