Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Patricia K. Quinn x
  • All content x
Clear All Modify Search
Katharine S. Law, Andreas Stohl, Patricia K. Quinn, Charles A. Brock, John F. Burkhart, Jean-Daniel Paris, Gerard Ancellet, Hanwant B. Singh, Anke Roiger, Hans Schlager, Jack Dibb, Daniel J. Jacob, Steve R. Arnold, Jacques Pelon, and Jennie L. Thomas

Given the rapid nature of climate change occurring in the Arctic and the difficulty climate models have in quantitatively reproducing observed changes such as sea ice loss, it is important to improve understanding of the processes leading to climate change in this region, including the role of short-lived climate pollutants such as aerosols and ozone. It has long been known that pollution produced from emissions at midlatitudes can be transported to the Arctic, resulting in a winter/spring aerosol maximum known as Arctic haze. However, many uncertainties remain about the composition and origin of Arctic pollution throughout the troposphere; for example, many climate–chemistry models fail to reproduce the strong seasonality of aerosol abundance observed at Arctic surface sites, the origin and deposition mechanisms of black carbon (soot) particles that darken the snow and ice surface in the Arctic is poorly understood, and chemical processes controlling the abundance of tropospheric ozone are not well quantified. The International Polar Year (IPY) Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, Climate, Chemistry, Aerosols and Transport (POLARCAT) core project had the goal to improve understanding about the origins of pollutants transported to the Arctic; to detail the chemical composition, optical properties, and climate forcing potential of Arctic aerosols; to evaluate the processes governing tropospheric ozone; and to quantify the role of boreal forest fires. This article provides a review of the many results now available based on analysis of data collected during the POLARCAT aircraft-, ship-, and ground-based field campaigns in spring and summer 2008. Major findings are highlighted and areas requiring further investigation are discussed.

Full access
Madison J. Post, Christopher W. Fairall, Jack B. Snider, Yong Han, Allen B. White, Warner L. Ecklund, Klaus M. Weickmann, Patricia K. Quinn, Daniel I. Cooper, Steven M. Sekelsky, Robert E. McIntosh, Peter Minnett, and Robert O. Knuteson

Twelve national research organizations joined forces on a 30-day, 6800 n mi survey of the Central and Tropical Western Pacific on NOAA's Research Vessel Discoverer. The Combined Sensor Program (CSP), which began in American Samoa on 14 March 1996, visited Manus Island, Papua New Guinea, and ended in Hawaii on 13 April, used a unique combination of in situ, satellite, and remote sensors to better understand relationships between atmospheric and oceanic variables that affect radiative balance in this climatically important region. Besides continuously measuring both shortwave and longwave radiative fluxes, CSP instruments also measured most other factors affecting the radiative balance, including profiles of clouds (lidar and radar), aerosols (in situ and lidar), moisture (balloons, lidar, and radiometers), and sea surface temperature (thermometers and Fourier Transform Infrared Radiometers). Surface fluxes of heat, momentum, and moisture were also measured continuously. The Department of Energy's Atmospheric Radiation Measurement Program used the mission to validate similar measurements made at their CART site on Manus Island and to investigate the effect (if any) of large nearby landmasses on the island-based measurements.

Full access
Dan Lubin, Damao Zhang, Israel Silber, Ryan C. Scott, Petros Kalogeras, Alessandro Battaglia, David H. Bromwich, Maria Cadeddu, Edwin Eloranta, Ann Fridlind, Amanda Frossard, Keith M. Hines, Stefan Kneifel, W. Richard Leaitch, Wuyin Lin, Julien Nicolas, Heath Powers, Patricia K. Quinn, Penny Rowe, Lynn M. Russell, Sangeeta Sharma, Johannes Verlinde, and Andrew M. Vogelmann


The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) performed comprehensive meteorological and aerosol measurements and ground-based atmospheric remote sensing at two Antarctic stations using the most advanced instrumentation available. A suite of cloud research radars, lidars, spectral and broadband radiometers, aerosol chemical and microphysical sampling equipment, and meteorological instrumentation was deployed at McMurdo Station on Ross Island from December 2015 through December 2016. A smaller suite of radiometers and meteorological equipment, including radiosondes optimized for surface energy budget measurement, was deployed on the West Antarctic Ice Sheet between 4 December 2015 and 17 January 2016. AWARE provided Antarctic atmospheric data comparable to several well-instrumented high Arctic sites that have operated for many years and that reveal numerous contrasts with the Arctic in aerosol and cloud microphysical properties. These include persistent differences in liquid cloud occurrence, cloud height, and cloud thickness. Antarctic aerosol properties are also quite different from the Arctic in both seasonal cycle and composition, due to the continent’s isolation from lower latitudes by Southern Ocean storm tracks. Antarctic aerosol number and mass concentrations are not only non-negligible but perhaps play a more important role than previously recognized because of the higher sensitivities of clouds at the very low concentrations caused by the large-scale dynamical isolation. Antarctic aerosol chemical composition, particularly organic components, has implications for local cloud microphysics. The AWARE dataset, fully available online in the ARM Program data archive, offers numerous case studies for unique and rigorous evaluation of mixed-phase cloud parameterization in climate models.

Full access
Greg M. McFarquhar, Elizabeth Smith, Elizabeth A. Pillar-Little, Keith Brewster, Phillip B. Chilson, Temple R. Lee, Sean Waugh, Nusrat Yussouf, Xuguang Wang, Ming Xue, Gijs de Boer, Jeremy A. Gibbs, Chris Fiebrich, Bruce Baker, Jerry Brotzge, Frederick Carr, Hui Christophersen, Martin Fengler, Philip Hall, Terry Hock, Adam Houston, Robert Huck, Jamey Jacob, Robert Palmer, Patricia K. Quinn, Melissa Wagner, Yan (Rockee) Zhang, and Darren Hawk
Full access
John H. Seinfeld, Gregory R. Carmichael, Richard Arimoto, William C. Conant, Frederick J. Brechtel, Timothy S. Bates, Thomas A. Cahill, Antony D. Clarke, Sarah J. Doherty, Piotr J. Flatau, Barry J. Huebert, Jiyoung Kim, Krzysztof M. Markowicz, Patricia K. Quinn, Lynn M. Russell, Philip B. Russell, Atsushi Shimizu, Yohei Shinozuka, Chul H. Song, Youhua Tang, Itsushi Uno, Andrew M. Vogelmann, Rodney J. Weber, Jung-Hun Woo, and Xiao Y. Zhang

Although continental-scale plumes of Asian dust and pollution reduce the amount of solar radiation reaching the earth's surface and perturb the chemistry of the atmosphere, our ability to quantify these effects has been limited by a lack of critical observations, particularly of layers above the surface. Comprehensive surface, airborne, shipboard, and satellite measurements of Asian aerosol chemical composition, size, optical properties, and radiative impacts were performed during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) study. Measurements within a massive Chinese dust storm at numerous widely spaced sampling locations revealed the highly complex structure of the atmosphere, in which layers of dust, urban pollution, and biomass- burning smoke may be transported long distances as distinct entities or mixed together. The data allow a first-time assessment of the regional climatic and atmospheric chemical effects of a continental-scale mixture of dust and pollution. Our results show that radiative flux reductions during such episodes are sufficient to cause regional climate change.

Full access