Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Patrick N. Gatlin x
  • Refine by Access: All Content x
Clear All Modify Search
Patrick N. Gatlin
and
Steven J. Goodman

Abstract

An algorithm that provides an early indication of impending severe weather from observed trends in thunderstorm total lightning flash rates has been developed. The algorithm framework has been tested on 20 thunderstorms, including 1 nonsevere storm, which occurred over the course of six separate days during the spring months of 2002 and 2003. The identified surges in lightning rate (or jumps) are compared against 110 documented severe weather events produced by these thunderstorms as they moved across portions of northern Alabama and southern Tennessee. Lightning jumps precede 90% of these severe weather events, with as much as a 27-min advance notification of impending severe weather on the ground. However, 37% of lightning jumps are not followed by severe weather reports. Various configurations of the algorithm are tested, and the highest critical success index attained is 0.49. Results suggest that this lightning jump algorithm may be a useful operational diagnostic tool for severe thunderstorm potential.

Full access
Merhala Thurai
,
Patrick Gatlin
,
V. N. Bringi
,
Walter Petersen
,
Patrick Kennedy
,
Branislav Notaroš
, and
Lawrence Carey

Abstract

Analysis of drop size distributions (DSD) measured by collocated Meteorological Particle Spectrometer (MPS) and a third-generation, low-profile, 2D-video disdrometer (2DVD) are presented. Two events from two different regions (Greeley, Colorado, and Huntsville, Alabama) are analyzed. While the MPS, with its 50-μm resolution, enabled measurements of small drops, typically for drop diameters below about 1.1 mm, the 2DVD provided accurate measurements for drop diameters above 0.7 mm. Drop concentrations in the 0.7–1.1-mm overlap region were found to be in excellent agreement between the two instruments. Examination of the combined spectra clearly reveals a drizzle mode and a precipitation mode. The combined spectra were analyzed in terms of the DSD parameters, namely, the normalized intercept parameter N W , the mass-weighted mean diameter D m , and the standard deviation of mass spectrum σ M . The inclusion of small drops significantly affected the N W and the ratio σ M /D m toward higher values relative to using the 2DVD-based spectra alone. For each of the two events, polarimetric radar data were used to characterize the variation of radar-measured reflectivity Z h and differential reflectivity Z dr with D m from the combined spectra. In the Greeley event, this variation at S band was well captured for small values of D m (<0.5 mm) where measured Z dr tended to 0 dB but Z h showed a noticeable decrease with decreasing D m . For the Huntsville event, an overpass of the Global Precipitation Measurement mission Core Observatory satellite enabled comparison of satellite-based dual-frequency radar retrievals of D m with ground-based DSD measurements. Small differences were found between the satellite-based radar retrievals and disdrometers.

Full access
Ali Tokay
,
Charles N. Helms
,
Kwonil Kim
,
Patrick N. Gatlin
, and
David B. Wolff

Abstract

Improving estimation of snow water equivalent rate (SWER) from radar reflectivity (Ze), known as a SWER(Ze) relationship, is a priority for NASA’s Global Precipitation Measurement (GPM) mission ground validation program as it is needed to comprehensively validate spaceborne precipitation retrievals. This study investigates the performance of eight operational and four research-based SWER(Ze) relationships utilizing Precipitation Imaging Probe (PIP) observations from the International Collaborative Experiment for Pyeongchang 2018 Olympic and Paralympic Winter Games (ICE-POP 2018) field campaign. During ICE-POP 2018, there were 10 snow events that are classified by synoptic conditions as either cold low or warm low, and a SWER(Ze) relationship is derived for each event. Additionally, a SWER(Ze) relationship is derived for each synoptic classification by merging all events within each class. Two new types of SWER(Ze) relationships are derived from PIP measurements of bulk density and habit classification. These two physically based SWER(Ze) relationships provided superior estimates of SWER when compared to the operational, event-specific, and synoptic SWER(Ze) relationships. For estimates of the event snow water equivalent total, the event-specific, synoptic, and best-performing operational SWER(Ze) relationships outperformed the physically based SWER(Ze) relationship, although the physically based relationships still performed well. This study recommends using the density or habit-based SWER(Ze) relationships for microphysical studies, whereas the other SWER(Ze) relationships are better suited toward hydrologic application.

Restricted access
Jairo M. Valdivia
,
Patrick N. Gatlin
,
Shailendra Kumar
,
Danny Scipión
,
Yamina Silva
, and
Walter A. Petersen

Abstract

A vertically pointing Ka-band radar (Metek MIRA-35C) installed at the Instituto Geofísico del Perú, Atmospheric Microphysics and Radiation Laboratory (LAMAR) Huancayo Observatory, which is located at an elevation of 3.3 km MSL in the Andes Mountains of Peru, is used to investigate the effects of terrain on satellite-based precipitation measurement in the Andes. We compare the vertical structure of precipitation observed by the MIRA-35C with Ka-band radar measurements from the Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) mission core satellite using an approach based on Taylor’s hypothesis of frozen turbulence that attempts to reduce the impact of spatiotemporal offsets between these two radar measurements. From 3 April 2014 to 20 May 2018, the DPR measured precipitation near LAMAR during 15 of its 157 coincident overpasses. There were six simultaneous observations with MIRA-35C. We found that the average of the DPR’s lowest clutter-free bin is 1.62 km AGL, but the presence of precipitation worsens the situation, causing a 0.4-km-deeper algorithm-detected blind zone for the DPR at the Huancayo Observatory. In the study area, the depth of the clutter layer observed with DPR often extends above the melting layer but can be highly variable, extending even as high as 5 km AGL. These results suggest that DPR estimates of stratiform precipitation over the Andes Mountains are likely underestimated because of the terrain effects on the satellite measurements and problems in its blind zone detection algorithms, highlighting the difficulty in estimating precipitation in mountainous terrain from spaceborne radar.

Full access
Patrick N. Gatlin
,
Merhala Thurai
,
V. N. Bringi
,
Walter Petersen
,
David Wolff
,
Ali Tokay
,
Lawrence Carey
, and
Matthew Wingo

Abstract

A dataset containing 9637 h of two-dimensional video disdrometer observations consisting of more than 240 million raindrops measured at diverse climatological locations was compiled to help characterize underlying drop size distribution (DSD) assumptions that are essential to make precise retrievals of rainfall using remote sensing platforms. This study concentrates on the tail of the DSD, which largely impacts rainfall retrieval algorithms that utilize radar reflectivity. The maximum raindrop diameter was a median factor of 1.8 larger than the mass-weighted mean diameter and increased with rainfall rate. Only 0.4% of the 1-min DSD spectra were found to contain large raindrops exceeding 5 mm in diameter. Large raindrops were most abundant at the tropical locations, especially in Puerto Rico, and were largely concentrated during the spring, especially at subtropical locations. Giant raindrops exceeding 8 mm in diameter occurred at tropical, subtropical, and high-latitude continental locations. The greatest numbers of giant raindrops were found in the subtropical locations, with the largest being a 9.7-mm raindrop that occurred in northern Oklahoma during the passage of a hail-producing thunderstorm. These results suggest large raindrops are more likely to fall from clouds that contain hail, especially those raindrops exceeding 8 mm in diameter.

Full access
Ali Tokay
,
Liang Liao
,
Robert Meneghini
,
Charles N. Helms
,
S. Joseph Munchak
,
David B. Wolff
, and
Patrick N. Gatlin

Abstract

Parameters of the normalized gamma particle size distribution (PSD) have been retrieved from the Precipitation Image Package (PIP) snowfall observations collected during the International Collaborative Experiment–PyeongChang Olympic and Paralympic winter games (ICE-POP 2018). Two of the gamma PSD parameters, the mass-weighted particle diameter D mass and the normalized intercept parameter NW , have median values of 1.15–1.31 mm and 2.84–3.04 log(mm−1 m−3), respectively. This range arises from the choice of the relationship between the maximum versus equivalent diameter, D mxD eq, and the relationship between the Reynolds and Best numbers, Re–X. Normalization of snow water equivalent rate (SWER) and ice water content W by NW reduces the range in NW , resulting in well-fitted power-law relationships between SWER/NW and D mass and between W/NW and D mass. The bulk descriptors of snowfall are calculated from PIP observations and from the gamma PSD with values of the shape parameter μ ranging from −2 to 10. NASA’s Global Precipitation Measurement (GPM) mission, which adopted the normalized gamma PSD, assumes μ = 2 and 3 in its two separate algorithms. The mean fractional bias (MFB) of the snowfall parameters changes with μ, where the functional dependence on μ depends on the specific snowfall parameter of interest. The MFB of the total concentration was underestimated by 0.23–0.34 when μ = 2 and by 0.29–0.40 when μ = 3, whereas the MFB of SWER had a much narrower range (from −0.03 to 0.04) for the same μ values.

Restricted access
Stephanie M. Wingo
,
Walter A. Petersen
,
Patrick N. Gatlin
,
Charanjit S. Pabla
,
David A. Marks
, and
David B. Wolff

Abstract

Researchers now have the benefit of an unprecedented suite of space- and ground-based sensors that provide multidimensional and multiparameter precipitation information. Motivated by NASA’s Global Precipitation Measurement (GPM) mission and ground validation objectives, the System for Integrating Multiplatform Data to Build the Atmospheric Column (SIMBA) has been developed as a unique multisensor precipitation data fusion tool to unify field observations recorded in a variety of formats and coordinate systems into a common reference frame. Through platform-specific modules, SIMBA processes data from native coordinates and resolutions only to the extent required to set them into a user-defined three-dimensional grid. At present, the system supports several ground-based scanning research radars, NWS NEXRAD radars, profiling Micro Rain Radars (MRRs), multiple disdrometers and rain gauges, soundings, the GPM Microwave Imager and Dual-Frequency Precipitation Radar on board the Core Observatory satellite, and Multi-Radar Multi-Sensor system quantitative precipitation estimates. SIMBA generates a new atmospheric column data product that contains a concomitant set of all available data from the supported platforms within the user-specified grid defining the column area in the versatile netCDF format. Key parameters for each data source are preserved as attributes. SIMBA provides a streamlined framework for initial research tasks, facilitating more efficient precipitation science. We demonstrate the utility of SIMBA for investigations, such as assessing spatial precipitation variability at subpixel scales and appraising satellite sensor algorithm representation of vertical precipitation structure for GPM Core Observatory overpass cases collected in the NASA Wallops Precipitation Science Research Facility and the GPM Olympic Mountain Experiment (OLYMPEX) ground validation field campaign in Washington State.

Full access
Jonathan L. Case
,
Patrick N. Gatlin
,
Jayanthi Srikishen
,
Bhupesh Adhikary
,
Md. Abdul Mannan
, and
Jordan R. Bell

Abstract

Some of the most intense thunderstorms on Earth occur in the Hindu Kush Himalaya (HKH) region of southern Asia—where many organizations lack the capacity needed to predict, observe, and/or effectively respond to the threats associated with high-impact convective weather. As a result, a disproportionately large number of casualties and damage often occur with premonsoon severe thunderstorms in this region. To address this problem, we combined ensemble numerical weather prediction (NWP), satellite-based precipitation products, and land-imagery techniques into a High-Impact Weather Assessment Toolkit (HIWAT) customized for HKH. In 2018 and 2019 demonstrations, a regional convection-allowing ensemble NWP system was configured to provide real-time probabilistic guidance of thunderstorm hazards over HKH, applying ensemble techniques developed for U.S.-focused experiments. Case studies of damaging wind, large hail, lightning, a rare Nepalese tornado, and landfalling tropical cyclone events show how HIWAT efficiently packages ensemble output into products that are readily interpreted by forecasters in HKH. Precipitation and total lightning flash verification reveal the highest skill occurred where deep convection was most frequently observed in Bangladesh and northeastern India, and verification scores exceeded global ensemble scores for heavy precipitation rates. These results demonstrate that plausible forecasts of thunderstorm hazards can be attained with relatively low computational resources, thereby facilitating advancements in extreme weather forecasting services in historically underserved regions such as HKH. In early 2022, a custom version of HIWAT was installed at the Bangladesh Meteorological Department using in-house computational resources, providing regional ensemble forecast guidance in real time.

Open access
Eugene W. McCaul Jr.
,
Georgios Priftis
,
Jonathan L. Case
,
Themis Chronis
,
Patrick N. Gatlin
,
Steven J. Goodman
, and
Fanyou Kong

Abstract

The Lightning Forecasting Algorithm (LFA), a simple empirical procedure that transforms kinematic and microphysical fields from explicit-convection numerical models into mapped fields of estimated total lightning flash origin density, has been incorporated into operational forecast models in recent years. While several changes designed to improve LFA accuracy and reliability have been implemented, the basic linear relationship between model proxy amplitudes and diagnosed total lightning flash rate densities remains unchanged. The LFA has also been added to many models configured with microphysics and boundary layer parameterizations different from those used in the original study, suggesting the need for checks of the LFA calibration factors. To assist users, quantitative comparisons of LFA output for some commonly used model physics choices are performed. Results are reported here from a 12-member ensemble that combines four microphysics with three boundary layer schemes, to provide insight into the extent of LFA output variability. Data from spring 2018 in Nepal–Bangladesh–India show that across the ensemble of forecasts in the entire three-month period, the LFA peak flash rate densities all fell within a factor of 1.21 of well-calibrated LFA-equipped codes, with most schemes failing to show differences that are statistically significant. Sensitivities of threat areal coverage are, however, larger, suggesting substantial variation in the amounts of ice species produced in storm anvils by the various microphysics schemes. Current explicit-convection operational models in the United States employ schemes that are among those exhibiting the larger biases. For users seeking optimum performance, we present recommended methods for recalibrating the LFA.

Free access
Daniel C. Watters
,
Patrick N. Gatlin
,
David T. Bolvin
,
George J. Huffman
,
Robert Joyce
,
Pierre Kirstetter
,
Eric J. Nelkin
,
Sarah Ringerud
,
Jackson Tan
,
Jianxin Wang
, and
David Wolff

Abstract

NASA’s multi-satellite precipitation product from the Global Precipitation Measurement (GPM) mission, the Integrated Multi-satellitE Retrievals for GPM (IMERG) product, is validated over tropical and high-latitude oceans from June 2014 to August 2021. This oceanic study uses the GPM Validation Network’s island-based radars to assess IMERG when the GPM Core Observatory’s Microwave Imager (GMI) observes precipitation at these sites (i.e., IMERG-GMI). Error tracing from the Level 3 (gridded) IMERG V06B product back through to the input Level 2 (satellite footprint) Goddard Profiling Algorithm GMI V05 climate (GPROF-CLIM) product quantifies the errors separately associated with each step in the gridding and calibration of the estimates from GPROF-CLIM to IMERG-GMI. Mean relative bias results indicate that IMERG-GMI V06B overestimates Alaskan high-latitude oceanic precipitation by +147% and tropical oceanic precipitation by +12% with respect to surface radars. GPROF-CLIM V05 overestimates Alaskan oceanic precipitation by +15%, showing that the IMERG algorithm’s calibration adjustments to the input GPROF-CLIM precipitation estimates increase the mean relative bias in this region. In contrast, IMERG adjustments are minimal over tropical waters with GPROF-CLIM overestimating oceanic precipitation by +14%. This study discovered that the IMERG V06B gridding process incorrectly geolocated GPROF-CLIM V05 precipitation estimates by 0.1° eastward in the latitude band 75°N–S, which has been rectified in the IMERG V07 algorithm. Correcting for the geolocation error in IMERG-GMI V06B improved oceanic statistics, with improvements greater in tropical waters than Alaskan waters. This error tracing approach enables a high-precision diagnosis of how different IMERG algorithm steps contribute to and mitigate errors, demonstrating the importance of collaboration between evaluation studies and algorithm developers.

Open access