Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Paul C. Dunne x
  • Refine by Access: All Content x
Clear All Modify Search
Laurence S. Kalkstein
,
Paul C. Dunne
, and
Hengchun Ye

Abstract

It has been suggested that previous results indicating an increase in surface temperatures over the past 40 years within the coldest air masses at four stations in the western North American Arctic may be attributed to the shorter residence lime of these air masses through the time period. If true, this contradicts the original contention that these air masses have undergone physical character changes, possibly attributed to anthropogenic sources, during the period. A reevaluation of the data at two of these stations indicates that a long-term warming is, in fact, taking place even when residence time is kept constant. Thus, it is suggested that changes in the physical character of these very cold air masses are due to factors other than residence time.

Full access
Laurence S. Kalkstein
,
Paul C. Dunne
, and
Russell S. Vose

Abstract

Studies which utilize a long-term temperature record in determining the possibility of a global warming have led to conflicting results. We suggest that a time-series evaluation of mean annual temperatures is not sufficiently robust to determine the existence of a long-term warming. We propose the utilization of an air mass-based synoptic climatological approach, as it is possible that local changes within particular air masses have been obscured by the gross scale of temperature time-series evaluations used in previous studies of this type. An automated synoptic index was constructed for the winter months in four western North American Arctic locations to determine if the frequency of occurrence of the coldest and mildest air masses has changed and if the physical character of these air masses has shown signs of modification over the past 40 years. It appears that the frequencies of the majority of the coldest air masses have tended to decrease, while those of the warmest air masses have increased. In addition, the very coldest air masses at each site have warmed between 1°C to almost 4°C over the same time interval. A technique is suggested to determine whether these changes are possibly attributable to anthropogenic influences.

Full access
Thomas L. Delworth
,
Anthony J. Broccoli
,
Anthony Rosati
,
Ronald J. Stouffer
,
V. Balaji
,
John A. Beesley
,
William F. Cooke
,
Keith W. Dixon
,
John Dunne
,
K. A. Dunne
,
Jeffrey W. Durachta
,
Kirsten L. Findell
,
Paul Ginoux
,
Anand Gnanadesikan
,
C. T. Gordon
,
Stephen M. Griffies
,
Rich Gudgel
,
Matthew J. Harrison
,
Isaac M. Held
,
Richard S. Hemler
,
Larry W. Horowitz
,
Stephen A. Klein
,
Thomas R. Knutson
,
Paul J. Kushner
,
Amy R. Langenhorst
,
Hyun-Chul Lee
,
Shian-Jiann Lin
,
Jian Lu
,
Sergey L. Malyshev
,
P. C. D. Milly
,
V. Ramaswamy
,
Joellen Russell
,
M. Daniel Schwarzkopf
,
Elena Shevliakova
,
Joseph J. Sirutis
,
Michael J. Spelman
,
William F. Stern
,
Michael Winton
,
Andrew T. Wittenberg
,
Bruce Wyman
,
Fanrong Zeng
, and
Rong Zhang

Abstract

The formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved.

Two versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2° latitude × 2.5° longitude; the atmospheric model has 24 vertical levels. The ocean resolution is 1° in latitude and longitude, with meridional resolution equatorward of 30° becoming progressively finer, such that the meridional resolution is 1/3° at the equator. There are 50 vertical levels in the ocean, with 22 evenly spaced levels within the top 220 m. The ocean component has poles over North America and Eurasia to avoid polar filtering. Neither coupled model employs flux adjustments.

The control simulations have stable, realistic climates when integrated over multiple centuries. Both models have simulations of ENSO that are substantially improved relative to previous GFDL coupled models. The CM2.0 model has been further evaluated as an ENSO forecast model and has good skill (CM2.1 has not been evaluated as an ENSO forecast model). Generally reduced temperature and salinity biases exist in CM2.1 relative to CM2.0. These reductions are associated with 1) improved simulations of surface wind stress in CM2.1 and associated changes in oceanic gyre circulations; 2) changes in cloud tuning and the land model, both of which act to increase the net surface shortwave radiation in CM2.1, thereby reducing an overall cold bias present in CM2.0; and 3) a reduction of ocean lateral viscosity in the extratropics in CM2.1, which reduces sea ice biases in the North Atlantic.

Both models have been used to conduct a suite of climate change simulations for the 2007 Intergovernmental Panel on Climate Change (IPCC) assessment report and are able to simulate the main features of the observed warming of the twentieth century. The climate sensitivities of the CM2.0 and CM2.1 models are 2.9 and 3.4 K, respectively. These sensitivities are defined by coupling the atmospheric components of CM2.0 and CM2.1 to a slab ocean model and allowing the model to come into equilibrium with a doubling of atmospheric CO2. The output from a suite of integrations conducted with these models is freely available online (see http://nomads.gfdl.noaa.gov/).

Full access