Search Results

You are looking at 1 - 10 of 19 items for

  • Author or Editor: Paul Kucera x
  • All content x
Clear All Modify Search
Paul A. Kucera and Bozena Lapeta
Full access
Paul A. Kucera, Witold F. Krajewski, and C. Bryan Young

Abstract

Geographic information systems (GISs) combined with digital elevation models (DEMs) provide opportunities to evaluate weather radar beam blockage and other ground clutter phenomena. The authors explore this potential using topographic information and a simple beam propagation model for the complex terrain of Guam. To evaluate the effect of different DEM resolutions, they compare the simulated patterns of complete and partial beam blockage with probability of detection maps derived from a large database of level II radar reflectivity for the U.S. Air Force Weather Surveillance Radar-1988 Doppler (WSR-88D) on Guam. The main conclusion of the study is that the GIS approach provides useful insight into the actual pattern of blocked areas. The DEM resolution plays a role in resolving the blocked patterns. In general, higher DEM resolution provides better results although widely available lower-resolution DEMs can provide valuable information about beam-blocking effects.

Full access
Chris J. Theisen, Paul A. Kucera, and Michael R. Poellot

Abstract

Tropical thunderstorms produce large amounts of cirrus anvil clouds, which have a large effect on the climate system. Modeling of the cirrus anvil is a very important factor in the driving processes in atmospheric, climate, and radiation budget models. The current research project is focused on determining the relationships between the thunderstorm intensity and cirrus anvil characteristics of storms during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL-FACE). During July 2002, 19 different storms were selected for analysis. A vertical profile of reflectivity was extracted for each cell in which the maximum reflectivity, and maximum 10- and 40-dBZ height were identified. A majority of the thunderstorms in this study were single cells or isolated multicell clusters initiated from outflow boundaries or sea-breeze interactions. The results show that a general thunderstorm life cycle characteristic time sequence was determined, finding that the maximum reflectivity occurred on average 10 min after the cell first appeared in the base scan reflectivity image. The anvil origin and maximum height were found to occur approximately 10 and 25 min after maximum reflectivity, respectively. The anvil’s mean particle size was found to increase with time and decrease with altitude. The opposite relationship holds true for the particle concentration. Contour analysis has shown that the particle size increased with increased thunderstorm intensity and time after maximum reflectivity. An increase in convective core intensity corresponds to increased anvil particle concentrations early after maximum reflectivity, as was observed.

Full access
Christopher R. Williams, Kenneth S. Gage, Wallace Clark, and Paul Kucera

Abstract

This paper describes a method of absolutely calibrating and routinely monitoring the reflectivity calibration from a scanning weather radar using a vertically profiling radar that has been absolutely calibrated using a collocated surface disdrometer. The three instruments have different temporal and spatial resolutions, and the concept of upscaling is used to relate the small resolution volume disdrometer observations with the large resolution volume scanning radar observations. This study uses observations collected from a surface disdrometer, two profiling radars, and the National Weather Service (NWS) Weather Surveillance Radar-1988 Doppler (WSR-88D) scanning weather radar during the Texas–Florida Underflight-phase B (TEFLUN-B) ground validation field campaign held in central Florida during August and September 1998.

The statistics from the 2062 matched profiling and scanning radar observations during this 2-month period indicate that the WSR-88D radar had a reflectivity 0.7 dBZ higher than the disdrometer-calibrated profiler, the standard deviation was 2.4 dBZ, and the 95% confidence interval was 0.1 dBZ. This study implies that although there is large variability between individual matched observations, the precision of a series of observations is good, allowing meaningful comparisons useful for calibration and monitoring.

Full access
Andrew J. Newman, Paul A. Kucera, and Larry F. Bliven

Abstract

Herein the authors introduce the Snowflake Video Imager (SVI), which is a new instrument for characterizing frozen precipitation. An SVI utilizes a video camera with sufficient frame rate, pixels, and shutter speed to record thousands of snowflake images. The camera housing and lighting produce little airflow distortion, so SVI data are quite representative of natural conditions, which is important for volumetric data products such as snowflake size distributions. Long-duration, unattended operation of an SVI is feasible because datalogging software provides data compression and the hardware can operate for months in harsh winter conditions. Details of SVI hardware and field operation are given. Snowflake size distributions (SSDs) from a storm near Boulder, Colorado, are computed. An SVI is an imaging system, so SVI data can be utilized to compute diverse data products for various applications. In this paper, the authors present visualizations of frozen particles (i.e., snowflake aggregates as well as individual crystals), which provide insight into the weather conditions such as temperature, humidity, and winds.

Full access
Mariusz Starzec, Gretchen L. Mullendore, and Paul A. Kucera

Abstract

Several months of regional convection-permitting forecasts using two microphysical schemes (WSM6 and Thompson) are evaluated to determine the accuracy of the simulated convective structure and convective depth and the impact of microphysical scheme on simulated convective properties and biases. Forecasts are evaluated by using concepts from object-based approaches to compare the three-dimensional simulated reflectivity field with the reflectivity field as observed by radar. Results from analysis of both schemes reveals that forecasts generally perform well near the surface but differ considerably aloft both from observations and from each other. Forecasts are found to contain too many convective cores that are individually larger than in the observations, with at least double the number of observed convective cores reaching the midtroposphere (i.e., 4–8 km). Although the number of cores is overpredicted, WSM6 cores typically contain lower simulated reflectivity values than the observations, and the regions of highest reflectivity values do not extend far enough vertically. Conversely, Thompson cores are found to have significantly higher reflectivity values within cores, with the strongest intensities extending higher than in the observations and having magnitudes higher than any observed cores. Forecast reflectivity distributions within convective cells are found to contain more spread than in the observations. The study also assessed the uncertainty in simulated reflectivity calculations by using a second commonly utilized method to calculate simulated reflectivity. The sensitivity analysis reveals that the primary conclusions with each method are similar but the variability generated by using different simulated reflectivity calculations can be as pronounced as when using different microphysical schemes.

Full access
Liping Deng, Matthew F. McCabe, Georgiy Stenchikov, Jason P. Evans, and Paul A. Kucera

Abstract

The challenges of monitoring and forecasting flash-flood-producing storm events in data-sparse and arid regions are explored using the Weather Research and Forecasting (WRF) Model (version 3.5) in conjunction with a range of available satellite, in situ, and reanalysis data. Here, we focus on characterizing the initial synoptic features and examining the impact of model parameterization and resolution on the reproduction of a number of flood-producing rainfall events that occurred over the western Saudi Arabian city of Jeddah. Analysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) data suggests that mesoscale convective systems associated with strong moisture convergence ahead of a trough were the major initial features for the occurrence of these intense rain events. The WRF Model was able to simulate the heavy rainfall, with driving convective processes well characterized by a high-resolution cloud-resolving model. The use of higher (1 km vs 5 km) resolution along the Jeddah coastline favors the simulation of local convective systems and adds value to the simulation of heavy rainfall, especially for deep-convection-related extreme values. At the 5-km resolution, corresponding to an intermediate study domain, simulation without a cumulus scheme led to the formation of deeper convective systems and enhanced rainfall around Jeddah, illustrating the need for careful model scheme selection in this transition resolution. In analysis of multiple nested WRF simulations (25, 5, and 1 km), localized volume and intensity of heavy rainfall together with the duration of rainstorms within the Jeddah catchment area were captured reasonably well, although there was evidence of some displacements of rainstorm events.

Full access
Andrew J. Newman, Paul A. Kucera, Christopher R. Williams, and Larry F. Bliven

Abstract

This paper develops a technique for retrieving snowflake size distributions (SSDs) from a vertically pointing 915-MHz vertical profiler. Drop size distributions (DSDs) have been retrieved from 915-MHz profilers for several years using least squares minimization to determine the best-fit DSD to the observed Doppler spectra. This same premise is used to attempt the retrieval of SSDs. A nonlinear search, the Levenberg–Marquardt (LM) method, is used to search the physically realistic solution space and arrive at a best-fit SSD from the Doppler spectra of the profiler. The best fit is assumed to be the minimum of the squared difference of the log of the observed and modeled spectrum power over the precipitation portion of the spectrum. A snowflake video imager (SVI) disdrometer was collocated with the profiler and provided surface estimates of the SSDs. The SVI also provided estimates of crystal type, which is critical in attempting to estimate the density–size relationship. A method to vary the density–size relationship during the event was developed as well. This was necessary to correctly scale the SVI SSDs for comparison to the profiler-estimated distributions. Five events were examined for this study, and good overall agreement was found between the profiler and SVI for the lowest profiler gate (225 m AGL). Vertical profiles of SSDs were also produced and appear to be physically reasonable. Uncertainty estimates using simulated Doppler spectra show that the retrieval uncertainties are larger than that for rainfall and can approach and exceed 100% for situations with large spectral broadening as a result of atmospheric turbulence. The larger uncertainties are attributed to the lack of unique Doppler spectra for quite different SSDs, resulting in a less well-behaved solution space than that of rainfall retrievals.

Full access
David A. Short, Paul A. Kucera, Brad S. Ferrier, John C. Gerlach, Steven A. Rutiedge, and Otto W. Thiele

Radar rainfall measurements over the equatorial western Pacific warm pool were collected by two shipboard Doppler radars as part of the Tropical Oceans Global Atmosphere Coupled Ocean–Atmosphere Response Experiment during the intensive observing period (November 1992–February 1993). A comprehensive dataset of gridded rainfall fields, convective/stratiform identification maps, and vertical structure products has been produced, covering an area approximately 400 km (E–W) by 300 km (N–S) within the Intensive Flux Array (IFA), centered near 2°S, 156°E. The radar rainfall product, which was used as validation for the Third Algorithm Intercomparison Project of the Global Precipitation Climatology Project, indicates an overall average of 4.8 mm day−1; however, correction for range dependence increases the total to 5.4 mm day−1. Rainfall patterns varied considerably during the experiment with isolated convection dominating periods of light winds, while squall lines and organized mesoscale systems were abundant during two westerly wind bursts. An area-average rainfall of 9.9 mm day−1 was observed during the active 2-week period at the end of December, while 0.4 mm day−1 was observed during the quiescent week of 2–8 February. The eastern portion of the IFA received the most rainfall with localized maxima exceeding 16 mm day−1 for the most active 3-week period. Comparison of daily radar rainfall totals with those observed by an optical rain gauge (ORG) on the 2°S, 156°E buoy shows ORG totals to be systematically higher, by a factor of 2.5. The discrepancy results from a higher average rainfall rate, when raining, as reported by the buoy ORG. However, rainfall rate statistics from the ORGs on the research vessel Xiang Yang Hong #5 and from its radar are in excellent agreement under the following conditions: 1) the ship is drifting, and 2) the radar data are in the near vicinity of the ship (3–7 km).

Full access
Paul A. Kucera, Elizabeth E. Ebert, F. Joseph Turk, Vincenzo Levizzani, Dalia Kirschbaum, Francisco J. Tapiador, Alexander Loew, and M. Borsche

Advances to space-based observing systems and data processing techniques have made precipitation datasets quickly and easily available via various data portals and widely used in Earth sciences. The increasingly lengthy time span of space-based precipitation data records has enabled cross-discipline investigations and applications that would otherwise not be possible, revealing discoveries related to hydrological and land processes, climate, atmospheric composition, and ocean freshwater budget and proving a vital element in addressing societal issues. The purpose of this article is to demonstrate how the availability and continuity of precipitation data records from recent and upcoming space missions is transforming the ways that scientific and societal issues are addressed, in ways that would not be otherwise possible.

Full access