Search Results
You are looking at 1 - 10 of 37 items for
- Author or Editor: Paul Lawson x
- Refine by Access: All Content x
Abstract
A system which measures vertical velocity of the air from an aircraft is discussed and evaluated. Basically, the vertical air velocity system (VAVS) utilizes an incidence vane, vertical accelerometer, and computer-directed high-accuracy vertical gyro to measure and display vertical air velocity in real time. This technique is found to have several advantages over computational techniques which use aircraft response to estimate vertical air velocity.
The VAVS is compared in a formation flight with the vertical air velocity output from a system employing an inertial navigation system (INS) mounted on an NCAR Queen Air. Spectral density plots for the VAVS and INS agreed well with each other for wavelengths from 2 km to 150 m. Also shown is a representative VAVS data output from penetrations of a cumulus cloud during the 1976 HIPLEX program.
Abstract
A system which measures vertical velocity of the air from an aircraft is discussed and evaluated. Basically, the vertical air velocity system (VAVS) utilizes an incidence vane, vertical accelerometer, and computer-directed high-accuracy vertical gyro to measure and display vertical air velocity in real time. This technique is found to have several advantages over computational techniques which use aircraft response to estimate vertical air velocity.
The VAVS is compared in a formation flight with the vertical air velocity output from a system employing an inertial navigation system (INS) mounted on an NCAR Queen Air. Spectral density plots for the VAVS and INS agreed well with each other for wavelengths from 2 km to 150 m. Also shown is a representative VAVS data output from penetrations of a cumulus cloud during the 1976 HIPLEX program.
Abstract
The basic design requirements and dynamic performance evaluation techniques are discussed for a vertical air velocity system (VAVS) installed on a Learjet. An empirical technique is presented which compensates the measured angle of attack for the effects of upwash. Flight tests of the VAVS indicated dynamic errors on the order of 0.6 m s−1 plus 3–12% of the aircraft induced vertical velocity during maneuvers where horizontal accelerations were <0.2 m s−2. Substantially larger dynamic errors were seen in the VAVS during maneuvers where the horizontal acceleration exceeded about 0.5 m s−2.
Abstract
The basic design requirements and dynamic performance evaluation techniques are discussed for a vertical air velocity system (VAVS) installed on a Learjet. An empirical technique is presented which compensates the measured angle of attack for the effects of upwash. Flight tests of the VAVS indicated dynamic errors on the order of 0.6 m s−1 plus 3–12% of the aircraft induced vertical velocity during maneuvers where horizontal accelerations were <0.2 m s−2. Substantially larger dynamic errors were seen in the VAVS during maneuvers where the horizontal acceleration exceeded about 0.5 m s−2.
Abstract
Two-dimensional (2D) imaging probes, such as the 2D stereo (2D-S) probe and the cloud imaging probe (CIP), are routinely used to provide in situ measurements of cloud particle properties. The basic measurement is shadowgraphs of water drops and ice particles from which particle size distributions, projected particle area, and mass concentrations are determined. These data permeate data archives of domestic and foreign government agencies, universities, and the private sector. This paper provides results from laboratory tests and flight tests on a Learjet research aircraft that give new insights into the performance of the 2D imaging probes, and how their performance may have impacted measurements collected in data archives. The laboratory tests are conducted with the aid of two devices: 1) a droplet generator that provides known concentrations of water drops from 15 to 65 µm ± 1 µm that can be positioned in the probe’s sample volume with 10-µm precision; and 2) a motorized spinning platform that supports transparent disks with small opaque features (i.e., a “spinning disk”), which replicates the effect of particles transecting the probe’s sample volume at translational speeds up to 190 m s−1. The flight tests were conducted with a Learjet research aircraft that collected cloud particle data at true airspeeds from 99 to 170 m s−1. The results provide new insights into how probe optics, time response, and data throughput of the 2D-S and CIP electro-optics impact the measurements of cloud particles. The results, summarized in the conclusions, suggest how archived data are impacted.
Abstract
Two-dimensional (2D) imaging probes, such as the 2D stereo (2D-S) probe and the cloud imaging probe (CIP), are routinely used to provide in situ measurements of cloud particle properties. The basic measurement is shadowgraphs of water drops and ice particles from which particle size distributions, projected particle area, and mass concentrations are determined. These data permeate data archives of domestic and foreign government agencies, universities, and the private sector. This paper provides results from laboratory tests and flight tests on a Learjet research aircraft that give new insights into the performance of the 2D imaging probes, and how their performance may have impacted measurements collected in data archives. The laboratory tests are conducted with the aid of two devices: 1) a droplet generator that provides known concentrations of water drops from 15 to 65 µm ± 1 µm that can be positioned in the probe’s sample volume with 10-µm precision; and 2) a motorized spinning platform that supports transparent disks with small opaque features (i.e., a “spinning disk”), which replicates the effect of particles transecting the probe’s sample volume at translational speeds up to 190 m s−1. The flight tests were conducted with a Learjet research aircraft that collected cloud particle data at true airspeeds from 99 to 170 m s−1. The results provide new insights into how probe optics, time response, and data throughput of the 2D-S and CIP electro-optics impact the measurements of cloud particles. The results, summarized in the conclusions, suggest how archived data are impacted.
Abstract
The general characteristics of the clouds that were included in the HIPLEX-1 experiment are reviewed, and the results for the response variables are interpreted in light of other measurements from the instrumented aircraft. In most seeded clouds, the HIPLEX-1 experimental hypothesis corresponded with the observed precipitation development for only the first ∼8 min after seeding. The failure to obtain a stronger statistical result is attributed to the inherent inefficiency of the small cumulus congestus selected as experimental units. This inefficiency was only partly due to low ice concentrations; a more significant cause of the low precipitation efficiency was the limited lifetime and low liquid water content of these clouds. Some calculations which indicate that these clouds could not support a rapid enough accretional growth process to lead to precipitation after seeding are discussed. Other reasons for the successes and failures of the experiment are discussed.
Abstract
The general characteristics of the clouds that were included in the HIPLEX-1 experiment are reviewed, and the results for the response variables are interpreted in light of other measurements from the instrumented aircraft. In most seeded clouds, the HIPLEX-1 experimental hypothesis corresponded with the observed precipitation development for only the first ∼8 min after seeding. The failure to obtain a stronger statistical result is attributed to the inherent inefficiency of the small cumulus congestus selected as experimental units. This inefficiency was only partly due to low ice concentrations; a more significant cause of the low precipitation efficiency was the limited lifetime and low liquid water content of these clouds. Some calculations which indicate that these clouds could not support a rapid enough accretional growth process to lead to precipitation after seeding are discussed. Other reasons for the successes and failures of the experiment are discussed.
Abstract
A brief review of errors associated with aircraft measurements of temperature in cumulus clouds is presented. This analysis forms the basis for the introduction of a compilation of in-cloud temperature measurements that the authors deem reliable. The measurements are mostly from radiometric thermometers, along with some carefully selected measurements taken with immersion thermometers. The data were collected in cumuli and cumulonimbi in Russia, the United States, and the central Pacific. An estimate of the in-cloud temperature measurement uncertainty is on the order of 0.5°C. The results suggest that the average temperature excess in cumulus clouds, when averaged over the cloud lifetime, is about 0.2°–0.3°C; this value may be biased to an unknown extent, however, by latencies inherent in identification and aircraft sampling of candidate clouds. The maximum temperature excess in growing cumulus congestus is about 2.5°–4°C. In the weak-echo regions of large thunderstorms, the temperature excess is at least 6°–8°C. The average and maximum temperature excesses in cumulus congestus over land are about 0.5°–1°C greater than over the ocean. Measurements of the spatial and vertical distributions of in-cloud temperature excess are presented. Some measurements that pertain to the structure of in-cloud temperature are also discussed.
Abstract
A brief review of errors associated with aircraft measurements of temperature in cumulus clouds is presented. This analysis forms the basis for the introduction of a compilation of in-cloud temperature measurements that the authors deem reliable. The measurements are mostly from radiometric thermometers, along with some carefully selected measurements taken with immersion thermometers. The data were collected in cumuli and cumulonimbi in Russia, the United States, and the central Pacific. An estimate of the in-cloud temperature measurement uncertainty is on the order of 0.5°C. The results suggest that the average temperature excess in cumulus clouds, when averaged over the cloud lifetime, is about 0.2°–0.3°C; this value may be biased to an unknown extent, however, by latencies inherent in identification and aircraft sampling of candidate clouds. The maximum temperature excess in growing cumulus congestus is about 2.5°–4°C. In the weak-echo regions of large thunderstorms, the temperature excess is at least 6°–8°C. The average and maximum temperature excesses in cumulus congestus over land are about 0.5°–1°C greater than over the ocean. Measurements of the spatial and vertical distributions of in-cloud temperature excess are presented. Some measurements that pertain to the structure of in-cloud temperature are also discussed.
Abstract
The spacing of cloud droplets observed along an approximately horizontal line through a cloud may be analyzed using a variety of techniques to reveal structure on small scales, sometimes called clustering, if such structure exists. A number of techniques have been applied and others have been suggested but not yet rigorously defined and applied. In this paper techniques are studied and evaluated using synthetic droplet spacing data. For the type of small-scale structure (clustering) modeled in this study, the most promising analysis approach is to use a combination of the power spectrum and the fishing statistic. Standard deviations and confidence intervals are determined for the power spectrum, the pair correlation function, and a modified fishing statistic. The clustering index and the volume-averaged pair correlation are shown to be less usefully normalized forms of the fishing statistic.
Abstract
The spacing of cloud droplets observed along an approximately horizontal line through a cloud may be analyzed using a variety of techniques to reveal structure on small scales, sometimes called clustering, if such structure exists. A number of techniques have been applied and others have been suggested but not yet rigorously defined and applied. In this paper techniques are studied and evaluated using synthetic droplet spacing data. For the type of small-scale structure (clustering) modeled in this study, the most promising analysis approach is to use a combination of the power spectrum and the fishing statistic. Standard deviations and confidence intervals are determined for the power spectrum, the pair correlation function, and a modified fishing statistic. The clustering index and the volume-averaged pair correlation are shown to be less usefully normalized forms of the fishing statistic.
Abstract
Updated analyses of in situ microphysical properties of three Arctic cloud systems sampled by aircraft in July 1998 during the Surface Heat Budget of the Arctic Ocean (SHEBA)/First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment–Arctic Clouds Experiment (FIRE–ACE) are examined in detail and compared with surface-based millimeter Doppler radar. A fourth case is given a cursory examination. The clouds were at 78°N over a melting ice surface, in distinctly different yet typical synoptic conditions. The cases comprise a midlevel all-ice cloud on 8 July; a deep, weakly forced, layered, mixed-phase stratus cloud system with pockets of drizzle, large dendrites, rimed ice and aggregates on 18 July; and a deep, mixed-phase cloud system with embedded convection on 28 July followed by an all-water boundary layer cloud on 29 July. The new observations include measured ice water content exceeding 2 g m−3 on 18 and 28 July and 3-cm snowflakes and 5-mm graupel particles on 28 July, unexpected in clouds close to the North Pole. Radar–aircraft agreement in reflectivity and derived microphysical parameters was reasonably good for the all-water and all-ice cases. In contrast, agreement in radar–aircraft reflectivity and derived parameters was generally inconsistent and sometimes poor for the two mixed-phase cases. The inconsistent agreement in radar–aircraft retrievals may be a result of large uncertainties in both instrument platforms and the algorithms used to retrieve derived parameters. The data also suggest that (single-wavelength) radar alone may not be capable of accurately retrieving the microphysical effects of cloud drops and drizzle in mixed-phase clouds, especially radiative properties such as extinction, albedo, and optical depth. However, more research is required before this generalization can be considered conclusive.
Abstract
Updated analyses of in situ microphysical properties of three Arctic cloud systems sampled by aircraft in July 1998 during the Surface Heat Budget of the Arctic Ocean (SHEBA)/First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment–Arctic Clouds Experiment (FIRE–ACE) are examined in detail and compared with surface-based millimeter Doppler radar. A fourth case is given a cursory examination. The clouds were at 78°N over a melting ice surface, in distinctly different yet typical synoptic conditions. The cases comprise a midlevel all-ice cloud on 8 July; a deep, weakly forced, layered, mixed-phase stratus cloud system with pockets of drizzle, large dendrites, rimed ice and aggregates on 18 July; and a deep, mixed-phase cloud system with embedded convection on 28 July followed by an all-water boundary layer cloud on 29 July. The new observations include measured ice water content exceeding 2 g m−3 on 18 and 28 July and 3-cm snowflakes and 5-mm graupel particles on 28 July, unexpected in clouds close to the North Pole. Radar–aircraft agreement in reflectivity and derived microphysical parameters was reasonably good for the all-water and all-ice cases. In contrast, agreement in radar–aircraft reflectivity and derived parameters was generally inconsistent and sometimes poor for the two mixed-phase cases. The inconsistent agreement in radar–aircraft retrievals may be a result of large uncertainties in both instrument platforms and the algorithms used to retrieve derived parameters. The data also suggest that (single-wavelength) radar alone may not be capable of accurately retrieving the microphysical effects of cloud drops and drizzle in mixed-phase clouds, especially radiative properties such as extinction, albedo, and optical depth. However, more research is required before this generalization can be considered conclusive.
Abstract
The microphysical properties of wave clouds based on data collected during 17 missions flown by a Learjet research aircraft are presented and discussed. This extensive dataset expands upon previous aircraft studies of wave clouds and introduces some new findings. While most aspects of the observations are consistent with basic cloud physics, some aspects remain difficult to interpret. Most notable among these are ice nucleation and aspects of the dynamical structure of wave clouds. A new hypothesis to explain the ice nucleation behavior is presented.
The average and standard deviation of bulk microphysical parameters are presented for various locations within the wave clouds. Using digital imagery from a cloud particle imager (CPI), the shapes of ice particles are studied and crystal habits are classified. For certain categories—rosette shapes, columns, and irregular shapes—power-law parameterizations of particle area from particle length are presented. Polycrystals with rosette shapes dominate the ice mass while small spheroidal and irregularly shaped crystals dominate the ice number concentration.
The concept and difficulties of using wave clouds as natural cloud physics laboratories are discussed and evaluated. A study of the riming threshold size of columns is in good agreement with the results of previous studies, showing that column width is the predominate factor in determining riming threshold. The first reported studies of the riming threshold size of rosette shapes and the threshold size for side-plane growth are presented.
Abstract
The microphysical properties of wave clouds based on data collected during 17 missions flown by a Learjet research aircraft are presented and discussed. This extensive dataset expands upon previous aircraft studies of wave clouds and introduces some new findings. While most aspects of the observations are consistent with basic cloud physics, some aspects remain difficult to interpret. Most notable among these are ice nucleation and aspects of the dynamical structure of wave clouds. A new hypothesis to explain the ice nucleation behavior is presented.
The average and standard deviation of bulk microphysical parameters are presented for various locations within the wave clouds. Using digital imagery from a cloud particle imager (CPI), the shapes of ice particles are studied and crystal habits are classified. For certain categories—rosette shapes, columns, and irregular shapes—power-law parameterizations of particle area from particle length are presented. Polycrystals with rosette shapes dominate the ice mass while small spheroidal and irregularly shaped crystals dominate the ice number concentration.
The concept and difficulties of using wave clouds as natural cloud physics laboratories are discussed and evaluated. A study of the riming threshold size of columns is in good agreement with the results of previous studies, showing that column width is the predominate factor in determining riming threshold. The first reported studies of the riming threshold size of rosette shapes and the threshold size for side-plane growth are presented.
Abstract
The ability of airborne instruments to measure temperature in cloud is studied using theoretical analyses and experimental data. Theoretical predictions of the effects of sensor wetting are reviewed and modified, and are then compared to measurements. Two airborne immersion thermometers, the NCAR “reverse-flow” thermometer and the Rosemount 102 thermometer, are compared to each other and to a new radiometric thermometer. The comparisons show that out of cloud all three thermometers agree well with each other. However, there is clear evidence that the immersion thermometers become wet in some clouds and measure erroneously low temperatures as a result. The evidence, particularly from measurements in unmixed parcels, supports the validity of the measurements from the radiometric thermometer both inside and outside clouds. Supporting evidence that the immersion sensors are susceptible to wetting is provided from tests in a wind tunnel and from measurements using a conductivity sensor placed at the location of the immersion sensors. The scientific consequences of these measurement errors, particularly in studies of entrainment and of cloud buoyancy, are discussed.
Abstract
The ability of airborne instruments to measure temperature in cloud is studied using theoretical analyses and experimental data. Theoretical predictions of the effects of sensor wetting are reviewed and modified, and are then compared to measurements. Two airborne immersion thermometers, the NCAR “reverse-flow” thermometer and the Rosemount 102 thermometer, are compared to each other and to a new radiometric thermometer. The comparisons show that out of cloud all three thermometers agree well with each other. However, there is clear evidence that the immersion thermometers become wet in some clouds and measure erroneously low temperatures as a result. The evidence, particularly from measurements in unmixed parcels, supports the validity of the measurements from the radiometric thermometer both inside and outside clouds. Supporting evidence that the immersion sensors are susceptible to wetting is provided from tests in a wind tunnel and from measurements using a conductivity sensor placed at the location of the immersion sensors. The scientific consequences of these measurement errors, particularly in studies of entrainment and of cloud buoyancy, are discussed.
Abstract
Corrections are made to the results, and interpretation thereof, presented in earlier work by Baker and Lawson. The main results regarding the improvement obtained using additional image parameters are unchanged. Secondary results regarding the applicability of subgroup parameterizations are corrected. Whereas it was found in the earlier work that very few subgroup parameterizations could be applied, it is now found that more subgroup parameterizations could be applied in situations in which crystal habits are sufficiently identifiable.
Abstract
Corrections are made to the results, and interpretation thereof, presented in earlier work by Baker and Lawson. The main results regarding the improvement obtained using additional image parameters are unchanged. Secondary results regarding the applicability of subgroup parameterizations are corrected. Whereas it was found in the earlier work that very few subgroup parameterizations could be applied, it is now found that more subgroup parameterizations could be applied in situations in which crystal habits are sufficiently identifiable.