Search Results
You are looking at 1 - 10 of 57 items for
- Author or Editor: Paul M. Markowski x
- Refine by Access: All Content x
Abstract
A 25-member ensemble of relatively high-resolution (75-m horizontal grid spacing) numerical simulations of tornadic supercell storms is used to obtain insight on their intrinsic predictability. The storm environments contain large and directionally varying wind shear, particularly in the boundary layer, large convective available potential energy, and a low lifting condensation level. Thus, the environments are extremely favorable for tornadic supercells. Small random temperature perturbations present in the initial conditions trigger turbulence within the boundary layers. The turbulent boundary layers are given 12 h to evolve to a quasi–steady state before storms are initiated via the introduction of a warm bubble. The spatially averaged environments are identical within the ensemble; only the random number seed and/or warm bubble location is varied. All of the simulated storms are long-lived supercells with intense updrafts and strong mesocyclones extending to the lowest model level. Even the storms with the weakest near-surface rotation probably can be regarded as weakly tornadic. However, despite the statistically identical environments, there is considerable divergence in the finescale details of the simulated storms. The intensities of the tornado-like vortices that develop in the simulations range from EF0 to EF3, with large differences in formation time and duration also being exhibited. The simulation differences only can be explained by differences in how the initial warm bubbles and/or storms interact with turbulent boundary layer structures. The results suggest very limited intrinsic predictability with respect to predicting the formation time, duration, and intensity of tornadoes.
Abstract
A 25-member ensemble of relatively high-resolution (75-m horizontal grid spacing) numerical simulations of tornadic supercell storms is used to obtain insight on their intrinsic predictability. The storm environments contain large and directionally varying wind shear, particularly in the boundary layer, large convective available potential energy, and a low lifting condensation level. Thus, the environments are extremely favorable for tornadic supercells. Small random temperature perturbations present in the initial conditions trigger turbulence within the boundary layers. The turbulent boundary layers are given 12 h to evolve to a quasi–steady state before storms are initiated via the introduction of a warm bubble. The spatially averaged environments are identical within the ensemble; only the random number seed and/or warm bubble location is varied. All of the simulated storms are long-lived supercells with intense updrafts and strong mesocyclones extending to the lowest model level. Even the storms with the weakest near-surface rotation probably can be regarded as weakly tornadic. However, despite the statistically identical environments, there is considerable divergence in the finescale details of the simulated storms. The intensities of the tornado-like vortices that develop in the simulations range from EF0 to EF3, with large differences in formation time and duration also being exhibited. The simulation differences only can be explained by differences in how the initial warm bubbles and/or storms interact with turbulent boundary layer structures. The results suggest very limited intrinsic predictability with respect to predicting the formation time, duration, and intensity of tornadoes.
Abstract
Nearly 50 years of observations of hook echoes and their associated rear-flank downdrafts (RFDs) are reviewed. Relevant theoretical and numerical simulation results also are discussed. For over 20 years, the hook echo and RFD have been hypothesized to be critical in the tornadogenesis process. Yet direct observations within hook echoes and RFDs have been relatively scarce. Furthermore, the role of the hook echo and RFD in tornadogenesis remains poorly understood. Despite many strong similarities between simulated and observed storms, some possibly important observations within hook echoes and RFDs have not been reproduced in three-dimensional numerical models.
Abstract
Nearly 50 years of observations of hook echoes and their associated rear-flank downdrafts (RFDs) are reviewed. Relevant theoretical and numerical simulation results also are discussed. For over 20 years, the hook echo and RFD have been hypothesized to be critical in the tornadogenesis process. Yet direct observations within hook echoes and RFDs have been relatively scarce. Furthermore, the role of the hook echo and RFD in tornadogenesis remains poorly understood. Despite many strong similarities between simulated and observed storms, some possibly important observations within hook echoes and RFDs have not been reproduced in three-dimensional numerical models.
Abstract
Idealized simulations are used to investigate the contributions of frictionally generated horizontal vorticity to the development of near-surface vertical vorticity in supercell storms. Of interest is the relative importance of barotropic vorticity (vorticity present in the prestorm environment), baroclinic vorticity (vorticity that is principally generated by horizontal buoyancy gradients), and viscous vorticity (vorticity that originates from the subgrid-scale turbulence parameterization, wherein the effects of surface drag reside), all of which can be advected, tilted, and stretched. Equations for the three partial vorticities are integrated in parallel with the model. The partial vorticity calculations are complemented by analyses of circulation following material circuits, which are often able to be carried out further in time because they are less susceptible to explosive error growth.
Near-surface mesocyclones that develop prior to cold-pool formation (this only happens when the environmental vorticity is crosswise near the surface) are dominated by only barotropic vertical vorticity when the lower boundary is free slip, but both barotropic and viscous vertical vorticity when surface drag is included. Baroclinic vertical vorticity grows large once a cold pool is established, regardless of the lower boundary condition and, in fact, dominates at the time the vortices are most intense in all but one simulation (a simulation dominated early by a barotropic mode of vortex genesis that may not be relevant to real convective storms).
Abstract
Idealized simulations are used to investigate the contributions of frictionally generated horizontal vorticity to the development of near-surface vertical vorticity in supercell storms. Of interest is the relative importance of barotropic vorticity (vorticity present in the prestorm environment), baroclinic vorticity (vorticity that is principally generated by horizontal buoyancy gradients), and viscous vorticity (vorticity that originates from the subgrid-scale turbulence parameterization, wherein the effects of surface drag reside), all of which can be advected, tilted, and stretched. Equations for the three partial vorticities are integrated in parallel with the model. The partial vorticity calculations are complemented by analyses of circulation following material circuits, which are often able to be carried out further in time because they are less susceptible to explosive error growth.
Near-surface mesocyclones that develop prior to cold-pool formation (this only happens when the environmental vorticity is crosswise near the surface) are dominated by only barotropic vertical vorticity when the lower boundary is free slip, but both barotropic and viscous vertical vorticity when surface drag is included. Baroclinic vertical vorticity grows large once a cold pool is established, regardless of the lower boundary condition and, in fact, dominates at the time the vortices are most intense in all but one simulation (a simulation dominated early by a barotropic mode of vortex genesis that may not be relevant to real convective storms).
Abstract
Two long-lived tornadic supercells were sampled by an automobile-borne observing system on 3 May 1999. The “mobile mesonet” observed relatively warm and moist air, weak baroclinity, and small pressure excess at the surface within the rear-flank downdrafts of the storms. Furthermore, the downdraft air parcels, which have been shown to enter the tornado in past observational and modeling studies, were associated with substantial convective available potential energy and small convective inhibition. The detection of only small equivalent potential temperature deficits (1–4 K) within the downdrafts may imply that the downdrafts were driven primarily by nonhydrostatic pressure gradients and/or precipitation drag, rather than by the entrainment of potentially cold environmental air at midlevels.
Abstract
Two long-lived tornadic supercells were sampled by an automobile-borne observing system on 3 May 1999. The “mobile mesonet” observed relatively warm and moist air, weak baroclinity, and small pressure excess at the surface within the rear-flank downdrafts of the storms. Furthermore, the downdraft air parcels, which have been shown to enter the tornado in past observational and modeling studies, were associated with substantial convective available potential energy and small convective inhibition. The detection of only small equivalent potential temperature deficits (1–4 K) within the downdrafts may imply that the downdrafts were driven primarily by nonhydrostatic pressure gradients and/or precipitation drag, rather than by the entrainment of potentially cold environmental air at midlevels.
Abstract
The authors document some of the unusual rotating updrafts (one of which produced a tornado) that developed over central Oklahoma on 28 October 1998 in an environment of strong (1.8 × 10−2 s−1) low-level (0–3 km) mean shear. The maximum convective available potential energy (including virtual temperature effects) a “storm” could have realized was approximately 300 J kg−1; however, most of the storms probably realized less than 100 J kg−1. Average (maximum) parcel virtual temperature excesses were estimated to be 0.4–1.2 K (1.8–2.8 K). Echo tops were measured from less than 5 km to 11.2 km above ground level (AGL), although visual observations and radar data suggested echoes that extended above approximately 5–6 km AGL were not associated with significantly buoyant cloud elements. Radar characteristics of many of the storms were similar to supercell storms (e.g., weak echo regions, echo overhang, velocity couplets, hook echoes), as were some of the visual characteristics near cloud base (e.g., wall clouds, rain-free bases, and striated low-level updrafts); however, visual characteristics in middle to upper portions of the storms were not characteristic of typical severe storms, supercells, or previously documented “minisupercells.” Furthermore, the buoyancy realized by the updrafts was estimated to be considerably less than environments associated with the aforementioned minisupercells.
Abstract
The authors document some of the unusual rotating updrafts (one of which produced a tornado) that developed over central Oklahoma on 28 October 1998 in an environment of strong (1.8 × 10−2 s−1) low-level (0–3 km) mean shear. The maximum convective available potential energy (including virtual temperature effects) a “storm” could have realized was approximately 300 J kg−1; however, most of the storms probably realized less than 100 J kg−1. Average (maximum) parcel virtual temperature excesses were estimated to be 0.4–1.2 K (1.8–2.8 K). Echo tops were measured from less than 5 km to 11.2 km above ground level (AGL), although visual observations and radar data suggested echoes that extended above approximately 5–6 km AGL were not associated with significantly buoyant cloud elements. Radar characteristics of many of the storms were similar to supercell storms (e.g., weak echo regions, echo overhang, velocity couplets, hook echoes), as were some of the visual characteristics near cloud base (e.g., wall clouds, rain-free bases, and striated low-level updrafts); however, visual characteristics in middle to upper portions of the storms were not characteristic of typical severe storms, supercells, or previously documented “minisupercells.” Furthermore, the buoyancy realized by the updrafts was estimated to be considerably less than environments associated with the aforementioned minisupercells.
Abstract
This study investigates the changes that simulated supercell thunderstorms impart on their surroundings. Supercells are simulated in a strongly sheared convective boundary layer comprising horizontal roll vortices. In sensitivity tests, the effects of cloud shading on the near-storm environment are explored through the removal of cloud ice, water, and hydrometeor effects on parameterized radiation. All of the simulated supercells increase the low-level shear in their proximal environment; however, this effect is more pronounced when cloud shading is included. Shading stabilizes the boundary layer beneath the cirrus anvil, diminishes boundary layer rolls and their attendant thermodynamic perturbations, and reduces the intensity of resolved turbulent mixing in the convective boundary layer. Anvil shading also acts to reduce the buoyancy of inflow air and the horizontal buoyancy gradient along the forward-flank outflow boundary.
Abstract
This study investigates the changes that simulated supercell thunderstorms impart on their surroundings. Supercells are simulated in a strongly sheared convective boundary layer comprising horizontal roll vortices. In sensitivity tests, the effects of cloud shading on the near-storm environment are explored through the removal of cloud ice, water, and hydrometeor effects on parameterized radiation. All of the simulated supercells increase the low-level shear in their proximal environment; however, this effect is more pronounced when cloud shading is included. Shading stabilizes the boundary layer beneath the cirrus anvil, diminishes boundary layer rolls and their attendant thermodynamic perturbations, and reduces the intensity of resolved turbulent mixing in the convective boundary layer. Anvil shading also acts to reduce the buoyancy of inflow air and the horizontal buoyancy gradient along the forward-flank outflow boundary.
Abstract
In idealized simulations of convective storms, which are almost always run as large-eddy simulations (LES), the planetary boundary layers (PBLs) are typically laminar (i.e., they lack turbulent eddies). When compared with turbulent simulations, theory, or simulations with PBL schemes, the typically laminar LES used in the severe-storms community produce unrealistic near-surface vertical wind profiles containing excessive vertical wind shear when the lower boundary condition is nonfree slip. Such simulations are potentially problematic given the recent interest within the severe storms community in the influence of friction on vorticity generation within tornadic storms. Simulations run as LES that include surface friction but lack well-resolved turbulent eddies thus probably overestimate friction’s effects on storms.
Abstract
In idealized simulations of convective storms, which are almost always run as large-eddy simulations (LES), the planetary boundary layers (PBLs) are typically laminar (i.e., they lack turbulent eddies). When compared with turbulent simulations, theory, or simulations with PBL schemes, the typically laminar LES used in the severe-storms community produce unrealistic near-surface vertical wind profiles containing excessive vertical wind shear when the lower boundary condition is nonfree slip. Such simulations are potentially problematic given the recent interest within the severe storms community in the influence of friction on vorticity generation within tornadic storms. Simulations run as LES that include surface friction but lack well-resolved turbulent eddies thus probably overestimate friction’s effects on storms.
Abstract
In the long-standing conceptual model of a supercell thunderstorm, the forward-flank downdraft (FFD) and its associated negative buoyancy originate from precipitation loading and the latent chilling of air due to the melting and evaporation of precipitation. The horizontal buoyancy gradient within the outflow of the FFD has been identified as an important source of low-level, streamwise vorticity in three-dimensional numerical simulations of supercells. These simulations have demonstrated that the formation of low-level mesocyclones is critically dependent on the baroclinic generation of horizontal vorticity within the FFD outflow.
Despite the implied dynamical importance of the FFD outflow in the evolution of supercell thunderstorms, only a very limited number of thermodynamic observations have been obtained within FFD outflow. The range of thermodynamic conditions within FFD outflow is not well known, nor is it known whether any systematic relationship exists between the thermodynamic characteristics of FFD outflow and the intensity of low-level mesocyclones and/or tornadogenesis. In this paper, in situ observations obtained at the ground by a mobile mesonet within FFD outflow are used to investigate whether any relationship exists between the thermodynamic characteristics of the outflow and low-level mesocyclogenesis and/or tornadogenesis. The data were obtained within both tornadic and nontornadic supercells (12 cases total) during the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX) from 1994 to 1995, and in smaller field campaigns during the 1997–99 period.
Abstract
In the long-standing conceptual model of a supercell thunderstorm, the forward-flank downdraft (FFD) and its associated negative buoyancy originate from precipitation loading and the latent chilling of air due to the melting and evaporation of precipitation. The horizontal buoyancy gradient within the outflow of the FFD has been identified as an important source of low-level, streamwise vorticity in three-dimensional numerical simulations of supercells. These simulations have demonstrated that the formation of low-level mesocyclones is critically dependent on the baroclinic generation of horizontal vorticity within the FFD outflow.
Despite the implied dynamical importance of the FFD outflow in the evolution of supercell thunderstorms, only a very limited number of thermodynamic observations have been obtained within FFD outflow. The range of thermodynamic conditions within FFD outflow is not well known, nor is it known whether any systematic relationship exists between the thermodynamic characteristics of FFD outflow and the intensity of low-level mesocyclones and/or tornadogenesis. In this paper, in situ observations obtained at the ground by a mobile mesonet within FFD outflow are used to investigate whether any relationship exists between the thermodynamic characteristics of the outflow and low-level mesocyclogenesis and/or tornadogenesis. The data were obtained within both tornadic and nontornadic supercells (12 cases total) during the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX) from 1994 to 1995, and in smaller field campaigns during the 1997–99 period.