Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Paul R. Krehbiel x
  • Refine by Access: All Content x
Clear All Modify Search
Richard D. Scott, Paul R. Krehbiel, and William Rison

Abstract

Observations are presented in which the standard dual-polarization meteorological quantities (Z DR, ϕ dp, and ρ HV) are determined from simultaneous horizontal (H) and vertical (V) transmissions. The return signals are measured in parallel H and V receiving channels. Because the parameters are determined from simultaneous measurements they are not affected by Doppler phase shifts that increase the variance of ϕ dp and ρ HV when alternating H and V polarizations are transmitted. The approach has the additional advantage that a high-power polarization switch is not needed. The relative phases of the H and V components were such that the transmitted polarization was circular. Circular polarization is shown to detect horizontally oriented particles such as rain with the same effectiveness as linearly polarized transmissions, and optimally detects randomly oriented or shaped particles such as hail. Circular polarization also optimally senses nonhorizontally oriented particles such as electrically aligned ice crystals. By not needing to alternate between H and V transmissions it becomes practical to make polarization-diverse measurements by transmitting other orthogonal polarizations on successive pulses (e.g., left-hand circular and +45° slant linear) to aid in identifying precipitation types. It is shown that ρ HV from simultaneous transmissions provides the same information on randomly oriented scatterers as the linear depolarization ratio LDR from H or V transmissions, and that LDR does not need to be measured when information on particle canting is not important or is not needed.

Full access
Stephanie A. Weiss, W. David Rust, Donald R. MacGorman, Eric C. Bruning, and Paul R. Krehbiel

Abstract

Data from a three-dimensional lightning mapping array (LMA) and from two soundings by balloon-borne electric field meters (EFMs) were used to analyze the electrical structures of a multicell storm observed on 25 June 2000 during the Severe Thunderstorm Electrification and Precipitation Study (STEPS). This storm had a complex, multicell structure with four sections, each of whose electrical structure differed from that of the others during all or part of the analyzed period. The number of vertically stacked charge regions in any given section of the storm ranged from two to six. The most complex charge and lightning structures occurred in regions with the highest reflectivity values and the deepest reflectivity cores. Intracloud flashes tended to concentrate in areas with large radar reflectivity values, though some propagated across more than one core of high reflectivity or into the low-reflectivity anvil. Intracloud lightning flash rates decreased as the vertical extent and maximum value of reflectivity cores decreased. Cloud-to-ground flash rates increased as cores of high reflectivity descended to low altitudes. Most cloud-to-ground flashes were positive. All observed positive ground flashes initiated between the lowest-altitude negative charge region and a positive charge region just above it. The storm’s complexity makes it hard to classify the vertical polarity of its overall charge structure, but most of the storm had a different vertical polarity than what is typically observed outside the Great Plains. The electrical structure can vary considerably from storm to storm, or even within the same storm, as in the present case.

Full access
Donald R. MacGorman, Ivy R. Apostolakopoulos, Nicole R. Lund, Nicholas W. S. Demetriades, Martin J. Murphy, and Paul R. Krehbiel

Abstract

The first flash produced by a storm usually does not strike ground, but little has been published concerning the time after the first flash before a cloud-to-ground flash occurs, particularly for a variety of climatological regions. To begin addressing this issue, this study analyzed data from very-high-frequency (VHF) lightning mapping systems, which detect flashes of all types, and from the U.S. National Lightning Detection Network (NLDN), which identifies flash type and detects roughly 90% of cloud-to-ground flashes overall. VHF mapping data were analyzed from three regions: north Texas, Oklahoma, and the high plains of Colorado, Kansas, and Nebraska. The percentage of storms in which a cloud-to-ground flash was detected in the first minute of lightning activity varied from 0% in the high plains to 10%–20% in Oklahoma and north Texas. The distribution of delays to the first cloud-to-ground flash varied similarly. In Oklahoma and north Texas, 50% of storms produced a cloud-to-ground flash within 5–10 min, and roughly 10% failed to produce a cloud-to-ground flash within 1 h. In the high plains, however, it required 30 min for 50% of storms to have produced a cloud-to-ground flash, and 20% produced no ground flash within 1 h. The authors suggest that the reason high plains storms take longer to produce cloud-to-ground lightning is because the formation of the lower charge needed to produce most cloud-to-ground flashes is inhibited either by delaying the formation of precipitation in the mid- and lower levels of storms or by many of the storms having an inverted-polarity electrical structure.

Full access
Alan M. Blyth, Rasmus E. Benestad, Paul R. Krehbiel, and John Latham

Abstract

Observations made in 1987 with the NCAR King Air aircraft and in 1993 with the New Mexico Institute of Mining and Technology dual-polarization radar have revealed the presence of supercooled raindrops in some New Mexico summertime cumulus clouds. In the case of the radar data, the evidence for the supercooled drops came from a column of enhanced Z DR that extended well above the 0°C level. The in situ data indicated that the supercooled raindrops were observed when cloud base was warmer than about 7°C and the depth of the cloud was greater than about 2.5 km.

Full access
Donald R. MacGorman, W. David Rust, Paul Krehbiel, William Rison, Eric Bruning, and Kyle Wiens

Abstract

Balloon soundings were made through two supercell storms during the Severe Thunderstorm Electrification and Precipitation Study (STEPS) in summer 2000. Instruments measured the vector electric field, temperature, pressure, relative humidity, and balloon location. For the first time, soundings penetrated both the strong updraft and the rainy downdraft region of the same supercell storm. In both storms, the strong updraft had fewer vertically separated charge regions than found near the rainy downdraft, and the updraft’s lowest charge was elevated higher, its bottom being near the 40-dBZ boundary of the weak-echo vault. The simpler, elevated charge structure is consistent with the noninductive graupel–ice mechanism dominating charge generation in updrafts. In the weak-echo vault, the amount of frozen precipitation and the time for particle interactions are too small for significant charging. Inductive charging mechanisms and lightning may contribute to the additional charge regions found at lower altitudes outside the updraft. Lightning mapping showed that the in-cloud channels of a positive ground flash could be in any one of the three vertically separated positive charge regions found outside the updraft, but were in the middle region, at 6–8 km MSL, for most positive ground flashes. The observations are consistent with the electrical structure of these storms having been inverted in polarity from that of most storms elsewhere. It is hypothesized that the observed inverted-polarity cloud flashes and positive ground flashes were caused by inverted-polarity storm structure, possibly due to a larger than usual rime accretion rate for graupel in a strong updraft.

Full access
Eric C. Bruning, W. David Rust, Terry J. Schuur, Donald R. MacGorman, Paul R. Krehbiel, and William Rison

Abstract

On 28–29 June 2004 a multicellular thunderstorm west of Oklahoma City, Oklahoma, was probed as part of the Thunderstorm Electrification and Lightning Experiment field program. This study makes use of radar observations from the Norman, Oklahoma, polarimetric Weather Surveillance Radar-1988 Doppler, three-dimensional lightning mapping data from the Oklahoma Lightning Mapping Array (LMA), and balloon-borne vector electric field meter (EFM) measurements. The storm had a low flash rate (30 flashes in 40 min). Four charge regions were inferred from a combination of LMA and EFM data. Lower positive charge near 4 km and midlevel negative charge from 4.5 to 6 km MSL (from 0° to −6.5°C) were generated in and adjacent to a vigorous updraft pulse. Further midlevel negative charge from 4.5 to 6 km MSL and upper positive charge from 6 to 8 km (from −6.5° to −19°C) were generated later in quantity sufficient to initiate lightning as the updraft decayed. A negative screening layer was present near the storm top (8.5 km MSL, −25°C). Initial lightning flashes were between lower positive and midlevel negative charge and started occurring shortly after a cell began lofting hydrometeors into the mixed phase region, where graupel was formed. A leader from the storm’s first flash avoided a region where polarimetric radar suggested wet growth and the resultant absence of noninductive charging of those hydrometeors. Initiation locations of later flashes that propagated into the upper positive charge tracked the descending location of a polarimetric signature of graupel. As the storm decayed, electric fields greater than 160 kV m−1 exceeded the minimum threshold for lightning initiation suggested by the hypothesized runaway breakdown process at 5.5 km MSL, but lightning did not occur. The small spatial extent (≈100 m) of the large electric field may not have been sufficient to allow runaway breakdown to fully develop and initiate lightning.

Full access
Donald R. MacGorman, W. David Rust, Terry J. Schuur, Michael I. Biggerstaff, Jerry M. Straka, Conrad L. Ziegler, Edward R. Mansell, Eric C. Bruning, Kristin M. Kuhlman, Nicole R. Lund, Nicholas S. Biermann, Clark Payne, Larry D. Carey, Paul R. Krehbiel, William Rison, Kenneth B. Eack, and William H. Beasley

The field program of the Thunderstorm Electrification and Lightning Experiment (TELEX) took place in central Oklahoma, May–June 2003 and 2004. It aimed to improve understanding of the interrelationships among microphysics, kinematics, electrification, and lightning in a broad spectrum of storms, particularly squall lines and storms whose electrical structure is inverted from the usual vertical polarity. The field program was built around two permanent facilities: the KOUN polarimetric radar and the Oklahoma Lightning Mapping Array. In addition, balloon-borne electric-field meters and radiosondes were launched together from a mobile laboratory to measure electric fields, winds, and standard thermodynamic parameters inside storms. In 2004, two mobile C-band Doppler radars provided high-resolution coordinated volume scans, and another mobile facility provided the environmental soundings required for modeling studies. Data were obtained from 22 storm episodes, including several small isolated thunderstorms, mesoscale convective systems, and supercell storms. Examples are presented from three storms. A heavy-precipitation supercell storm on 29 May 2004 produced greater than three flashes per second for 1.5 h. Holes in the lightning density formed and dissipated sequentially in the very strong updraft and bounded weak echo region of the mesocyclone. In a small squall line on 19 June 2004, most lightning flashes in the stratiform region were initiated in or near strong updrafts in the convective line and involved positive charge in the upper part of the radar bright band. In a small thunderstorm on 29 June 2004, lightning activity began as polarimetric signatures of graupel first appeared near lightning initiation regions.

Full access