Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Paulo Kubota x
  • All content x
Clear All Modify Search
Paulo Nobre, Leo S. P. Siqueira, Roberto A. F. de Almeida, Marta Malagutti, Emanuel Giarolla, Guilherme P. Castelão, Marcus J. Bottino, Paulo Kubota, Silvio N. Figueroa, Mabel C. Costa, Manoel Baptista Jr., Luiz Irber Jr., and Gabriel G. Marcondes

Abstract

The response of the global climate system to atmospheric CO2 concentration increase in time is scrutinized employing the Brazilian Earth System Model Ocean–Atmosphere version 2.3 (BESM-OA2.3). Through the achievement of over 2000 yr of coupled model integrations in ensemble mode, it is shown that the model simulates the signal of recent changes of global climate trends, depicting a steady atmospheric and oceanic temperature increase and corresponding marine ice retreat. The model simulations encompass the time period from 1960 to 2105, following the phase 5 of the Coupled Model Intercomparison Project (CMIP5) protocol. Notwithstanding the accurate reproduction of large-scale ocean–atmosphere coupled phenomena, like the ENSO phenomena over the equatorial Pacific and the interhemispheric gradient mode over the tropical Atlantic, the BESM-OA2.3 coupled model shows systematic errors on sea surface temperature and precipitation that resemble those of other global coupled climate models. Yet, the simulations demonstrate the model’s potential to contribute to the international efforts on global climate change research, sparking interest in global climate change research within the Brazilian climate modeling community, constituting a building block of the Brazilian Framework for Global Climate Change Research.

Full access
Nicholas P. Klingaman, Matthew Young, Amulya Chevuturi, Bruno Guimaraes, Liang Guo, Steven J. Woolnough, Caio A. S. Coelho, Paulo Y. Kubota, and Christopher E. Holloway

Abstract

Skillful and reliable predictions of week-to-week rainfall variations in South America, two to three weeks ahead, are essential to protect lives, livelihoods, and ecosystems. We evaluate forecast performance for weekly rainfall in extended austral summer (November–March) in four contemporary subseasonal systems, including a new Brazilian model, at 1–5-week leads for 1999–2010. We measure performance by the correlation coefficient (in time) between predicted and observed rainfall; we measure skill by the Brier skill score for rainfall terciles against a climatological reference forecast. We assess unconditional performance (i.e., regardless of initial condition) and conditional performance based on the initial phase of the Madden–Julian oscillation (MJO) and El Niño–Southern Oscillation (ENSO). All models display substantial mean rainfall biases, including dry biases in Amazonia and wet biases near the Andes, which are established by week 1 and vary little thereafter. Unconditional performance extends to week 2 in all regions except for Amazonia and the Andes, but to week 3 only over northern, northeastern, and southeastern South America. Skill for upper- and lower-tercile rainfall extends only to week 1. Conditional performance is not systematically or significantly higher than unconditional performance; ENSO and MJO events provide limited “windows of opportunity” for improved S2S predictions that are region and model dependent. Conditional performance may be degraded by errors in predicted ENSO and MJO teleconnections to regional rainfall, even at short lead times.

Open access
Jessica C. A. Baker, Dayana Castilho de Souza, Paulo Y. Kubota, Wolfgang Buermann, Caio A. S. Coelho, Martin B. Andrews, Manuel Gloor, Luis Garcia-Carreras, Silvio N. Figueroa, and Dominick V. Spracklen

Abstract

In South America, land–atmosphere interactions have an important impact on climate, particularly the regional hydrological cycle, but detailed evaluation of these processes in global climate models has been limited. Focusing on the satellite-era period of 2003–14, we assess land–atmosphere interactions on annual to seasonal time scales over South America in satellite products, a novel reanalysis (ERA5-Land), and two global climate models: the Brazilian Global Atmospheric Model version 1.2 (BAM-1.2) and the U.K. Hadley Centre Global Environment Model version 3 (HadGEM3). We identify key features of South American land–atmosphere interactions represented in satellite and model datasets, including seasonal variation in coupling strength, large-scale spatial variation in the sensitivity of evapotranspiration to surface moisture, and a dipole in evaporative regime across the continent. Differences between products are also identified, with ERA5-Land, HadGEM3, and BAM-1.2 showing opposite interactions to satellites over parts of the Amazon and the Cerrado and stronger land–atmosphere coupling along the North Atlantic coast. Where models and satellites disagree on the strength and direction of land–atmosphere interactions, precipitation biases and misrepresentation of processes controlling surface soil moisture are implicated as likely drivers. These results show where improvement of model processes could reduce uncertainty in the modeled climate response to land-use change, and highlight where model biases could unrealistically amplify drying or wetting trends in future climate projections. Finally, HadGEM3 and BAM-1.2 are consistent with the median response of an ensemble of nine CMIP6 models, showing they are broadly representative of the latest generation of climate models.

Open access
Silvio N. Figueroa, José P. Bonatti, Paulo Y. Kubota, Georg A. Grell, Hugh Morrison, Saulo R. M. Barros, Julio P. R. Fernandez, Enver Ramirez, Leo Siqueira, Graziela Luzia, Josiane Silva, Juliana R. Silva, Jayant Pendharkar, Vinicius B. Capistrano, Débora S. Alvim, Diego P. Enoré, Fábio L. R. Diniz, Praki Satyamurti, Iracema F. A. Cavalcanti, Paulo Nobre, Henrique M. J. Barbosa, Celso L. Mendes, and Jairo Panetta

Abstract

This article describes the main features of the Brazilian Global Atmospheric Model (BAM), analyses of its performance for tropical rainfall forecasting, and its sensitivity to convective scheme and horizontal resolution. BAM is the new global atmospheric model of the Center for Weather Forecasting and Climate Research [Centro de Previsão de Tempo e Estudos Climáticos (CPTEC)], which includes a new dynamical core and state-of-the-art parameterization schemes. BAM’s dynamical core incorporates a monotonic two-time-level semi-Lagrangian scheme, which is carried out completely on the model grid for the tridimensional transport of moisture, microphysical prognostic variables, and tracers. The performance of the quantitative precipitation forecasts (QPFs) from two convective schemes, the Grell–Dévényi (GD) scheme and its modified version (GDM), and two different horizontal resolutions are evaluated against the daily TRMM Multisatellite Precipitation Analysis over different tropical regions. Three main results are 1) the QPF skill was improved substantially with GDM in comparison to GD; 2) the increase in the horizontal resolution without any ad hoc tuning improves the variance of precipitation over continents with complex orography, such as Africa and South America, whereas over oceans there are no significant differences; and 3) the systematic errors (dry or wet biases) remain virtually unchanged for 5-day forecasts. Despite improvements in the tropical precipitation forecasts, especially over southeastern Brazil, dry biases over the Amazon and La Plata remain in BAM. Improving the precipitation forecasts over these regions remains a challenge for the future development of the model to be used not only for numerical weather prediction over South America but also for global climate simulations.

Full access
Ariane Frassoni, Dayana Castilho, Michel Rixen, Enver Ramirez, João Gerd Z. de Mattos, Paulo Kubota, Alan James Peixoto Calheiros, Kevin A. Reed, Maria Assunção F. da Silva Dias, Pedro L. da Silva Dias, Haroldo Fraga de Campos Velho, Stephan R. de Roode, Francisco Doblas-Reyes, Denis Eiras, Michael Ek, Silvio N. Figueroa, Richard Forbes, Saulo R. Freitas, Georg A. Grell, Dirceu L. Herdies, Peter H. Lauritzen, Luiz Augusto T. Machado, Antonio O. Manzi, Guilherme Martins, Gilvan S. Oliveira, Nilton E. Rosário, Domingo C. Sales, Nils Wedi, and Bárbara Yamada
Open access