Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: Pedro M. A. Miranda x
  • All content x
Clear All Modify Search
Pedro M. A. Miranda and Maria Antónia Valente

Abstract

A set of numerical simulations with a three-dimensional nonhydrostatic model is used to investigate the behavior of the atmospheric flow past idealized isolated mountains in the presence of an environmental critical level aloft. The study addresses the problem of three-dimensional effects on the generation of high-drag flow regimes as a function of the critical level height, concluding that those effects can lead to significant changes in the preferred heights for resonance. The results are compared with theories that have been proposed to explain the high-drag states in two-dimensional flow with critical levels and it is found that, while some of their predictions hold in three dimensions, there is not only an overall change in the amplitude of the effects but also an essential modification of the preferred locations of the critical level height leading to resonance. Whereas two-dimensional studies have shown a vertical spacing between resonant critical level heights very close to one hydrostatic wavelength, the present results show a clear half-wavelength periodicity, as in classic linear resonance. Both the latter result and the much reduced “resonance shift” observed in the present study seem to indicate that the two-dimensional hydraulic theory cannot be applied to circular mountains without significant modification. Some other significant differences between two- and three-dimensional results are shown and related to both the linear and nonlinear behavior of the three-dimensional unsheared flow.

For comparison, some three-dimensional simulations of flow past infinite ridges are also presented and they are found to be very similar to previous two-dimensional studies.

Full access
Emanuel Dutra, Pedro Viterbo, Pedro M. A. Miranda, and Gianpaolo Balsamo

Abstract

Three different complexity snow schemes implemented in the ECMWF land surface scheme Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) are evaluated within the EC-EARTH climate model. The snow schemes are (i) the original HTESSEL single-bulk-layer snow scheme, (ii) a new snow scheme in operations at ECMWF since September 2009, and (iii) a multilayer version of the previous. In offline site simulations, the multilayer scheme outperforms the single-layer schemes in deep snowpack conditions through its ability to simulate sporadic melting events thanks to the lower thermal inertial of the uppermost layer. Coupled atmosphere–land/snow simulations performed by the EC-EARTH climate model are validated against remote sensed snow cover and surface albedo. The original snow scheme has a systematic early melting linked to an underestimation of surface albedo during spring that was partially reduced with the new snow schemes. A key process to improve the realism of the near-surface atmospheric temperature and at the same time the soil freezing is the thermal insulation of the snowpack (tightly coupled with the accuracy of snow mass and density simulations). The multilayer snow scheme outperforms the single-layer schemes in open deep snowpack (such as prairies or tundra in northern latitudes) and is instead comparable in shallow snowpack conditions. However, the representation of orography in current climate models implies limitations for accurately simulating the snowpack, particularly over complex terrain regions such as the Rockies and the Himalayas.

Full access
Miguel A. C. Teixeira and Pedro M. A. Miranda

Abstract

The analytical model proposed by Teixeira, Miranda, and Valente is modified to calculate the gravity wave drag exerted by a stratified flow over a 2D mountain ridge. The drag is found to be more strongly affected by the vertical variation of the background velocity than for an axisymmetric mountain. In the hydrostatic approximation, the corrections to the drag due to this effect do not depend on the detailed shape of the ridge as long as this is exactly 2D. Besides the drag, all the perturbed quantities of the flow at the surface, including the pressure, may be calculated analytically.

Full access
Miguel A. C. Teixeira and Pedro M. A. Miranda

Abstract

The direct impact of mountain waves on the atmospheric circulation is due to the deposition of wave momentum at critical levels, or levels where the waves break. The first process is treated analytically in this study within the framework of linear theory. The variation of the momentum flux with height is investigated for relatively large shears, extending the authors’ previous calculations of the surface gravity wave drag to the whole atmosphere. A Wentzel–Kramers–Brillouin (WKB) approximation is used to treat inviscid, steady, nonrotating, hydrostatic flow with directional shear over a circular mesoscale mountain, for generic wind profiles. This approximation must be extended to third order to obtain momentum flux expressions that are accurate to second order. Since the momentum flux only varies because of wave filtering by critical levels, the application of contour integration techniques enables it to be expressed in terms of simple 1D integrals. On the other hand, the momentum flux divergence (which corresponds to the force on the atmosphere that must be represented in gravity wave drag parameterizations) is given in closed analytical form. The momentum flux expressions are tested for idealized wind profiles, where they become a function of the Richardson number (Ri). These expressions tend, for high Ri, to results by previous authors, where wind profile effects on the surface drag were neglected and critical levels acted as perfect absorbers. The linear results are compared with linear and nonlinear numerical simulations, showing a considerable improvement upon corresponding results derived for higher Ri.

Full access
Miguel A. C. Teixeira, Pedro M. A. Miranda, and JoséL. Argaín

Abstract

Internal gravity waves generated in two-layer stratified shear flows over mountains are investigated here using linear theory and numerical simulations. The impact on the gravity wave drag of wind profiles with constant unidirectional or directional shear up to a certain height and zero shear above, with and without critical levels, is evaluated. This kind of wind profile, which is more realistic than the constant shear extending indefinitely assumed in many analytical studies, leads to important modifications in the drag behavior due to wave reflection at the shear discontinuity and wave filtering by critical levels. In inviscid, nonrotating, and hydrostatic conditions, linear theory predicts that the drag behaves asymmetrically for backward and forward shear flows. These differences primarily depend on the fraction of wavenumbers that pass through their critical level before they are reflected by the shear discontinuity. If this fraction is large, the drag variation is not too different from that predicted for an unbounded shear layer, while if it is small the differences are marked, with the drag being enhanced by a considerable factor at low Richardson numbers (Ri). The drag may be further enhanced by nonlinear processes, but its qualitative variation for relatively low Ri is essentially unchanged. However, nonlinear processes seem to interact constructively with shear, so that the drag for a noninfinite but relatively high Ri is considerably larger than the drag without any shear at all.

Full access
Emanuel Dutra, Gianpaolo Balsamo, Pedro Viterbo, Pedro M. A. Miranda, Anton Beljaars, Christoph Schär, and Kelly Elder

Abstract

A new snow scheme for the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model has been tested and validated. The scheme includes a new parameterization of snow density, incorporating a liquid water reservoir, and revised formulations for the subgrid snow cover fraction and snow albedo. Offline validation (covering a wide range of spatial and temporal scales) includes simulations for several observation sites from the Snow Models Intercomparison Project-2 (SnowMIP2) and global simulations driven by the meteorological forcing from the Global Soil Wetness Project-2 (GSWP2) and by ECMWF Re-Analysis ERA-Interim. The new scheme reduces the end of season ablation biases from 10 to 2 days in open areas and from 21 to 13 days in forest areas. Global GSWP2 results are compared against basin-scale runoff and terrestrial water storage. The new snow density parameterization increases the snow thermal insulation, reducing soil freezing and leading to an improved hydrological cycle. Simulated snow cover fraction is compared against NOAA/National Environmental Satellite, Data, and Information Service (NESDIS) with a reduction of the negative bias of snow-covered area of the original snow scheme. The original snow scheme had a systematic negative bias in surface albedo when compared against Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data. The new scheme reduces the albedo bias, consequently reducing the spatial- and time-averaged surface net shortwave radiation bias by 5.2 W m−2 in 14% of the Northern Hemisphere land. The new snow scheme described in this paper was introduced in the ECMWF operational forecast system in September 2009 (cycle 35R3).

Full access
Miguel A. C. Teixeira, Pedro M. A. Miranda, and Maria Antónia Valente

Abstract

An analytical model is developed to predict the surface drag exerted by internal gravity waves on an isolated axisymmetric mountain over which there is a stratified flow with a velocity profile that varies relatively slowly with height. The model is linear with respect to the perturbations induced by the mountain, and solves the Taylor–Goldstein equation with variable coefficients using a Wentzel–Kramers–Brillouin (WKB) approximation, formally valid for high Richardson numbers, Ri. The WKB solution is extended to a higher order than in previous studies, enabling a rigorous treatment of the effects of shear and curvature of the wind profile on the surface drag. In the hydrostatic approximation, closed formulas for the drag are derived for generic wind profiles, where the relative magnitude of the corrections to the leading-order drag (valid for a constant wind profile) does not depend on the detailed shape of the orography. The drag is found to vary proportionally to Ri−1, decreasing as Ri decreases for a wind that varies linearly with height, and increasing as Ri decreases for a wind that rotates with height maintaining its magnitude. In these two cases the surface drag is predicted to be aligned with the surface wind. When one of the wind components varies linearly with height and the other is constant, the surface drag is misaligned with the surface wind, especially for relatively small Ri. All these results are shown to be in fairly good agreement with numerical simulations of mesoscale nonhydrostatic models, for high and even moderate values of Ri.

Full access
Miguel A. C. Teixeira, José Luis Argaín, and Pedro M. A. Miranda

Abstract

The drag produced by 2D orographic gravity waves trapped at a temperature inversion and waves propagating in the stably stratified layer existing above are explicitly calculated using linear theory, for a two-layer atmosphere with neutral static stability near the surface, mimicking a well-mixed boundary layer. For realistic values of the flow parameters, trapped-lee-wave drag, which is given by a closed analytical expression, is comparable to propagating-wave drag, especially in moderately to strongly nonhydrostatic conditions. In resonant flow, both drag components substantially exceed the single-layer hydrostatic drag estimate used in most parameterization schemes. Both drag components are optimally amplified for a relatively low-level inversion and Froude numbers Fr ≈ 1. While propagating-wave drag is maximized for approximately hydrostatic flow, trapped-lee-wave drag is maximized for l 2 a = O(1) (where l 2 is the Scorer parameter in the stable layer and a is the mountain width). This roughly happens when the horizontal scale of trapped lee waves matches that of the mountain slope. The drag behavior as a function of Fr for l 2 H = 0.5 (where H is the inversion height) and different values of l 2 a shows good agreement with numerical simulations. Regions of parameter space with high trapped-lee-wave drag correlate reasonably well with those where lee-wave rotors were found to occur in previous nonlinear numerical simulations including frictional effects. This suggests that trapped-lee-wave drag, besides giving a relevant contribution to low-level drag exerted on the atmosphere, may also be useful to diagnose lee-rotor formation.

Full access
Gil Lemos, Alvaro Semedo, Mikhail Dobrynin, Melisa Menendez, and Pedro M. A. Miranda

Abstract

A quantile-based bias-correction method is applied to a seven-member dynamic ensemble of global wave climate simulations with the aim of reducing the significant wave height H S, mean wave period T m, and mean wave direction (MWD) biases, in comparison with the ERA5 reanalysis. The corresponding projected changes toward the end of the twenty-first century are assessed. Seven CMIP5 EC-EARTH runs (single forcing) were used to force seven wave model (WAM) realizations (single model), following the RCP8.5 scenario (single scenario). The biases for the 1979–2005 reference period (present climate) are corrected using the empirical Gumbel quantile mapping and empirical quantile mapping methods. The same bias-correction parameters are applied to the H S, T m (and wave energy flux P w), and MWD future climate projections for the 2081–2100 period. The bias-corrected projected changes show increases in the annual mean H S (14%), T m (6.5%), and P w (30%) in the Southern Hemisphere and decreases in the Northern Hemisphere (mainly in the North Atlantic Ocean) that are more pronounced during local winter. For the upper quantiles, the bias-corrected projected changes are more striking during local summer, up to 120%, for P w. After bias correction, the magnitude of the H S, T m, and P w original projected changes has generally increased. These results, albeit consistent with recent studies, show the relevance of a quantile-based bias-correction method in the estimation of the future projected changes in swave climate that is able to deal with the misrepresentation of extreme phenomena, especially along the tropical and subtropical latitudes.

Restricted access

EC-Earth

A Seamless Earth-System Prediction Approach in Action

Wilco Hazeleger, Camiel Severijns, Tido Semmler, Simona Ştefănescu, Shuting Yang, Xueli Wang, Klaus Wyser, Emanuel Dutra, José M. Baldasano, Richard Bintanja, Philippe Bougeault, Rodrigo Caballero, Annica M. L. Ekman, Jens H. Christensen, Bart van den Hurk, Pedro Jimenez, Colin Jones, Per Kållberg, Torben Koenigk, Ray McGrath, Pedro Miranda, Twan van Noije, Tim Palmer, José A. Parodi, Torben Schmith, Frank Selten, Trude Storelvmo, Andreas Sterl, Honoré Tapamo, Martin Vancoppenolle, Pedro Viterbo, and Ulrika Willén
Full access