Search Results

You are looking at 1 - 10 of 35 items for

  • Author or Editor: Pengfei Zhang x
  • Refine by Access: All Content x
Clear All Modify Search
Pengfei Zhang
,
Gang Chen
, and
Yi Ming

Abstract

While there is substantial evidence for tropospheric jet shift and Hadley cell expansion in response to greenhouse gas increases, quantitative assessments of individual mechanisms and feedback for atmospheric circulation changes remain lacking. We present a new forcing–feedback analysis on circulation response to increasing CO2 concentration in an aquaplanet atmospheric model. This forcing–feedback framework explicitly identifies a direct zonal wind response by holding the zonal mean zonal wind exerting on the zonal advection of eddies unchanged, in comparison with the additional feedback induced by the direct response in zonal mean zonal wind. It is shown that the zonal advection feedback accounts for nearly half of the changes to the eddy-driven jet shift and Hadley cell expansion, largely contributing to the subtropical precipitation decline, when the CO2 concentration varies over a range of climates. The direct response in temperature displays the well-known tropospheric warming pattern to CO2 increases, but the feedback exhibits negative signals. The direct response in eddies is characterized by a reduction in upward wave propagation and a poleward shift of midlatitude eddy momentum flux (EMF) convergence, likely due to an increase in static stability from moist thermodynamic adjustment. In contrast, the feedback features a dipole pattern in EMF that further shifts and strengthens midlatitude EMF convergence, resulting from the upper-level zonal wind increase seen in the direct response. Interestingly, the direct response produces an increase in eddy kinetic energy (EKE), but the feedback weakens EKE. Thus, the forcing–feedback framework highlights the distinct effect of zonal mean advecting wind from direct thermodynamic effects in atmospheric response to greenhouse gas increases.

Full access
Pengfei Zhang
,
Yimin Liu
, and
Bian He

Abstract

Occupying the upper troposphere over subtropical Eurasia during boreal summer, the South Asian high (SAH) is thought to be a regulator of the East Asian summer monsoon (EASM), which is particularly important for regional climate over Asia. However, there is feedback of the condensational heating associated with EASM precipitation to SAH variability. In this study, interannual variation of SAH intensity and the mechanisms are investigated. For strong SAH cases, the high pressure system intensifies and expands. Significant positive anomalies of the geopotential height and upper-tropospheric temperature were found over the Middle East and to the east of the Tibetan Plateau (TP), namely, the western and the eastern flanks of the SAH. The dynamical diagnosis and the numerical experiments consistently show that the interannual variation of SAH intensity is strongly affected by EASM precipitation over the eastern TP–Yangtze River valley. The feedback of the condensational heating anomaly to the SAH is summarized as follows: Excessive EASM heating excites a local anticyclone in the upper troposphere and warms the upper troposphere, leading to the eastward extension of the SAH’s eastern edge and reinforcing geopotential height anomalies over East Asia. Furthermore, the monsoonal heating excites a westward-propagating Rossby wave that increases the upper-tropospheric geopotential height and warms the upper troposphere over the Middle East. In conclusion, this study suggests a mechanistic paradigm in which the EASM may also be a modulator of SAH variation rather than just a passive result of the latter as traditionally thought. The results suggest that the EASM and the SAH are a tightly interactive system.

Full access
Pengfei Zhang
,
Shun Liu
, and
Qin Xu

Abstract

Radar echoes from migrating birds can severely contaminate Doppler velocity measurements. For meteorological applications, especially quantitative applications in radar data assimilation, it is necessary to remove bird-contaminated velocity scans by using an automated identification technique. Such a technique should be also useful for ornithologists in selecting bird echoes automatically from radar scans. This technique can be developed in two steps: (i) extract the main features of migrating-bird echoes from reflectivity and Doppler velocity images and find proper parameters to quantify these features; (ii) utilize these parameters to develop an automated quality control procedure to identify and flag migrating-bird-contaminated Doppler velocity scans (sweeps). The first step is accomplished in this study (Part I) by identifying possible migrating-bird echoes in the level II data collected from the Oklahoma KTLX radar during the 2003 spring migrating season. The identifications are further verified by polarimetric radar measurements from the National Severe Storms Laboratory (NSSL) KOUN radar, Geostationary Operational Environmental Satellite (GOES) IR images, and rawinsonde measurements. Three proper parameters are found, and their histograms are prepared for the second step of development (reported in Part II).

Full access
Shun Liu
,
Qin Xu
, and
Pengfei Zhang

Abstract

Based on the Bayesian statistical decision theory, a probabilistic quality control (QC) technique is developed to identify and flag migrating-bird-contaminated sweeps of level II velocity scans at the lowest elevation angle using the QC parameters presented in Part I. The QC technique can use either each single QC parameter or all three in combination. The single-parameter QC technique is shown to be useful for evaluating the effectiveness of each QC parameter based on the smallness of the tested percentages of wrong decision by using the ground truth information (if available) or based on the smallness of the estimated probabilities of wrong decision (if there is no ground truth information). The multiparameter QC technique is demonstrated to be much better than any of the three single-parameter QC techniques, as indicated by the very small value of the tested percentages of wrong decision for no-flag decisions (not contaminated by migrating birds). Since the averages of the estimated probabilities of wrong decision are quite close to the tested percentages of wrong decision, they can provide useful information about the probability of wrong decision when the multiparameter QC technique is used for real applications (with no ground truth information).

Full access
Shun Liu
,
Chongjian Qiu
,
Qin Xu
, and
Pengfei Zhang

Abstract

A temporal interpolation is required for three-dimensional Doppler wind analysis when the precise measurement time is counted for each radar beam position. The time interpolation is traditionally done by a linear scheme either in the measurement space or in the analysis space. Because a volume scan often takes 5–10 min, the linear time interpolation is not accurate enough to capture the rapidly changing winds associated with a fast-moving and fast-growing storm. Performing the linear interpolation in a frame moving with the storm can reduce the error, but the analyzed wind field is traditionally assumed to be stationary in the moving frame. The stationary assumption simplifies the computation but ignores the time variation of the true wind field in the moving frame. By incorporating a linear time interpolation into the moving frame wind analysis, an improved scheme is developed. The merits of the new scheme are demonstrated by idealized examples and numerical experiments with simulated radar observations. The new scheme is also applied to real radar data for a supercell storm.

Full access
Amanda M. Murphy
,
Alexander Ryzhkov
, and
Pengfei Zhang

Abstract

A novel way to process polarimetric radar data collected via plan position indicator (PPI) scans and display those data in a time–height format is introduced. The columnar vertical profile (CVP) methodology uses radar data collected via multiple elevation scans, limited to data within a set region in range and azimuth relative to the radar, to create vertical profiles of polarimetric radar data representative of that limited region in space. This technique is compared to others existing in the literature, and various applications are discussed. Polarimetric ice microphysical retrievals are performed on CVPs created within the stratiform rain region of two mesoscale convective systems sampled during two field campaigns, where CVPs follow the track of research aircraft. Aircraft in situ data are collocated to microphysical retrieval data, and the accuracy of these retrievals is tested against other retrieval techniques in the literature.

Free access
Alexander Ryzhkov
,
Malte Diederich
,
Pengfei Zhang
, and
Clemens Simmer

Abstract

The potential utilization of specific attenuation A for rainfall estimation, mitigation of partial beam blockage, and radar networking is investigated. The R(A) relation is less susceptible to the variability of drop size distributions than traditional rainfall algorithms based on radar reflectivity Z, differential reflectivity Z DR, and specific differential phase K DP in a wide range of rain intensity. Specific attenuation is estimated from the radial profile of the measured Z and the total span of the differential phase using the ZPHI method. Since the estimated A is immune to reflectivity biases caused by radar miscalibration, attenuation, partial beam blockage, and wet radomes, rain retrieval from R(A) is also immune to the listed factors. The R(A) method was tested at X band using data collected by closely located radars in Germany and at S band for polarimetrically upgraded Weather Surveillance Radar-1988 Doppler (WSR-88D) radars in the United States.

It is demonstrated that the two adjacent X-band radars—one of which is miscalibrated and another which is affected by partial beam blockage—produce almost indistinguishable fields of rain rate. It is also shown that the R(A) method yields robust estimates of rain rates and rain totals at S band, where specific attenuation is vanishingly small. The X- and S-band estimates of rainfall obtained from R(A) are in good agreement with gauges.

Full access
Mark Weber
,
Dusan Zrnic
,
Pengfei Zhang
, and
Edward Mansell

Abstract

This article describes a concept whereby future operational polarimetric phased array radars (PPAR) routinely monitor ice crystal alignment regions caused by thundercloud electric fields with volume scan updates (∼12 min−1) sufficient to resolve the temporal variation due to lightning and subsequent rapid electric field regeneration in nonsevere thunderstorms. Routine observations of crystal alignment regions may enhance thunderstorm nowcasting through comparison of their temporal and spatial structure with other polarimetric signatures, integration with lightning detection data, and assimilation into convection resolving numerical weather prediction models. If crystal alignment observations indicate strong electrification well in advance of the first lightning strike and likewise reliably indicate the decay of strong electric fields at the end of a storm, this capability may improve warning for lightning-sensitive activities such as airport ramp operations and space launch. Experimental observations of crystal alignment volumes in central Oklahoma severe storms and their relation to those storms’ structures are presented and used to motivate discussion of possible PPAR architectures. In one case—a tornadic supercell—these observations illustrate an important limitation. Even the hypothesized 12 min−1 volume scan update rate would not resolve the temporal variation of the crystal alignment regions in such storms, suggesting that special, adaptive scanning methods may be appropriate for such storms. We describe how future operational phased array radars could support a crystal alignment measurement mode via parallel, time-multiplexed processing and discuss potential impacts on the radar’s primary weather observation mission. We conclude by discussing research needed to better understand technical challenges and operational benefits.

Restricted access
Jiaxi Hu
,
Daniel Rosenfeld
,
Alexander Ryzhkov
, and
Pengfei Zhang

Abstract

This study analyzes the microphysics and precipitation pattern of Hurricanes Harvey (2017) and Florence (2018) in both the eyewall and outer rainband regions. From the retrievals by a satellite red–green–blue scheme, the outer rainbands show a strong convective structure while the inner eyewall has less convective vigor (i.e., weaker upper-level reflectivities and electrification), which may be related to stronger vertical wind shear that hinders fast vertical motions. The WSR-88D column-vertical profiles further confirm that the outer rainband clouds have strong vertical motion and large ice-phase hydrometeor formation aloft, which correlates well with 3D Lightning Mapping Array source counts in height and time. From the results from this study, it is determined that the inner eyewall region is dominated by warm rain, whereas the external rainband region contains intense mixed-phase precipitation. External rainbands are defined here as those that reside outside of the main hurricane circulation, associated with surface tropical storm wind speeds. The synergy of satellite and radar dual-polarization parameters is instrumental in distinguishing between the key microphysical features of intense convective rainbands and the warm-rain-dominated eyewall regions within the hurricanes. Substantial amounts of ice aloft and intense updrafts in the external rainbands are indicative of heavy surface precipitation, which can have important implications for severe weather warnings and quantitative precipitation forecasts. The novel part of this study is to combine ground-based radar measurement with satellite observations to study hurricane microphysical structure from surface to cloud top so as to fill in the gaps between the two observational techniques.

Free access
Yifei Fan
,
Duo Chan
,
Pengfei Zhang
, and
Laifang Li

Abstract

Despite global warming, sea surface temperature (SST) in the subpolar North Atlantic has decreased since the 1900s. This local cooling, known as the North Atlantic cold blob (North Atlantic cold blob), signifies a unique role of the subpolar North Atlantic in uptaking heat and hence impacts downstream weather and climate. However, a lack of observational records and its constraints on climate models leave the North Atlantic cold blob formation mechanism inconclusive. Using simulations from the Coupled Model Intercomparison Project Phase 6, we assess the primary processes driving the North Atlantic cold blob within individual models and the consistency of mechanisms across models. We show that 11 out of 32 models, which we call “Cold Bold” models, simulate subpolar North Atlantic cooling over 1900–2014. Further analyzing the heat budget of subpolar North Atlantic SST shows that models have distinct mechanisms of cold blob formation. Whereas four out of the 11 Cold Blob models indicate decreased Oceanic Heat Transport Convergence (OHTC) as the key mechanism, another four models suggest changes in radiative processes making predominant contributions. The contribution of OHTC and radiative processes are comparable in the remaining three models. Such a model spread in the mechanism of cold blob formation may be associated with distinct base-state Atlantic Meridional Overturning Circulation (AMOC) strength, which explains about 39% of the inter-model spread in the contribution of OHTC to the simulated cold blob. Models with a stronger base-state AMOC suggest a greater role of OHTC, whereas those with a weaker base-state AMOC indicate radiative processes are more responsible. This model discrepancy suggests that the cold blob formation mechanism diagnosed from single models should be interpreted with caution.

Restricted access