Search Results

You are looking at 1 - 10 of 17 items for

  • Author or Editor: Peter Hitchcock x
  • All content x
Clear All Modify Search
Peter Hitchcock and Peter H. Haynes

Abstract

Numerical experiments, presented in a companion paper, have been performed in which the zonal-mean state of the stratosphere in a comprehensive, stratosphere-resolving, general circulation model is strongly relaxed (or “nudged”) toward the evolution of a reference sudden warming event in order to investigate its influence on the freely evolving troposphere below. Similar approaches have been used in a number of other studies. This raises the question of whether such an artificial relaxation induces the adiabatic and diabatic adjustments expected below the region of nudging, even in the absence of the stratospheric wave driving responsible for the reference event.

Motivated by this question, the zonally symmetric quasigeostrophic diabatic response to zonal forces (representing wave driving) in a system nudged to a time-dependent reference state is studied. In the presence of wave driving in the nudging region that differs from the reference state, the meridional mass circulation of the reference state is reproduced only in the region below the nudging up to a correction that is inversely proportional to the strength of the nudging. The anomalous circulation is confined because of an effective boundary condition at the interface of the nudging layer. The nudging also produces an artificial “sponge-layer feedback” immediately below the region of the nudging in response to differences in the tropospheric wave driving. The strength of this artificial feedback is closely related to the strength of the effective boundary condition; however, the time scale required for the sponge-layer feedback to be established is typically much longer than that required for the confinement.

Full access
Peter Hitchcock and Isla R. Simpson

Abstract

The coupling between the stratosphere and the troposphere following two major stratospheric sudden warmings is studied in the Canadian Middle Atmosphere Model using a nudging technique by which the zonal-mean evolution of the reference sudden warmings are artificially induced in an ~100-member ensemble spun off from a control simulation. Both reference warmings are taken from a freely running integration of the model. One event is a displacement, the other is a split, and both are followed by extended recoveries in the lower stratosphere. The methodology permits a statistically robust study of their influence on the troposphere below.

The nudged ensembles exhibit a tropospheric annular mode response closely analogous to that seen in observations, confirming the downward influence of sudden warmings on the troposphere in a comprehensive model. This tropospheric response coincides more closely with the lower-stratospheric annular mode anomalies than with the midstratospheric wind reversal. In addition to the expected synoptic-scale eddy feedback, the planetary-scale eddies also reinforce the tropospheric wind changes, apparently responding directly to the stratospheric anomalies.

Furthermore, despite the zonal symmetry of the stratospheric perturbation, a highly zonally asymmetric near-surface response is produced, corresponding to a strongly negative phase of the North Atlantic Oscillation with a much weaker response over the Pacific basin that matches composites of sudden warmings from the Interim ECMWF Re-Analysis (ERA-Interim). Phase 5 of the Coupled Model Intercomparison Project models exhibit a similar response, though in most models the response’s magnitude is underrepresented.

Full access
Peter Hitchcock and Isla R. Simpson

Abstract

The equatorward shift of the zonal-mean midlatitude tropospheric jet following a stratospheric sudden warming in a comprehensive stratosphere-resolving model is found to be well quantified by the simple model of tropospheric eddy feedbacks proposed by Lorenz and Hartmann. This permits a decomposition of the shift into a component driven by the stratospheric anomalies and a component driven by tropospheric feedbacks.

This is done by extending the simple model to include three effective forcing mechanisms by which the stratosphere may influence the tropospheric jet. These include 1) the zonally symmetric adjustments associated with the mean meridional circulation and the direct influence of the stratospheric anomalies on 2) the tropospheric synoptic-scale or 3) the tropospheric planetary-scale eddies. Although the anomalous tropospheric winds are primarily maintained against surface friction by the synoptic-scale eddies, this response can be entirely attributed to the eddy feedback term. The response of the planetary-scale eddies, in contrast, can be directly attributed to the stratosphere. The zonally symmetric tropospheric circulation associated with downward control is found to play little role in driving the tropospheric response.

The prospects of applying this methodology to reanalysis data are also considered, but statistical limitations and the relatively weak projection of the vertically integrated composite wind anomalies onto the leading EOF preclude any conclusions from being drawn.

Full access
Peter Hitchcock and Theodore G. Shepherd

Abstract

The recovery of the Arctic polar vortex following stratospheric sudden warmings is found to take upward of 3 months in a particular subset of cases, termed here polar-night jet oscillation (PJO) events. The anomalous zonal-mean circulation above the pole during this recovery is characterized by a persistently warm lower stratosphere, and above this a cold midstratosphere and anomalously high stratopause, which descends as the event unfolds. Composites of these events in the Canadian Middle Atmosphere Model show the persistence of the lower-stratospheric anomaly is a result of strongly suppressed wave driving and weak radiative cooling at these heights. The upper-stratospheric and lower-mesospheric anomalies are driven immediately following the warming by anomalous planetary-scale eddies, following which, anomalous parameterized nonorographic and orographic gravity waves play an important role. These details are found to be robust for PJO events (as opposed to sudden warmings in general) in that many details of individual PJO events match the composite mean.

A zonal-mean quasigeostrophic model on the sphere is shown to reproduce the response to the thermal and mechanical forcings produced during a PJO event. The former is well approximated by Newtonian cooling. The response can thus be considered as a transient approach to the steady-state, downward control limit. In this context, the time scale of the lower-stratospheric anomaly is determined by the transient, radiative response to the extended absence of wave driving. The extent to which the dynamics of the wave-driven descent of the stratopause can be considered analogous to the descending phases of the quasi-biennial oscillation (QBO) is also discussed.

Full access
Alison Ming, Peter Hitchcock, and Peter Haynes

Abstract

The response of the atmosphere to zonally symmetric applied heating and mechanical forcing is considered, allowing for the fact that the response may include a change in the wave force (or “wave drag”). A scaling argument shows that an applied zonally symmetric heating is effective in driving a steady meridional circulation provided that the wave force (required to satisfy angular momentum constraints) is sufficiently sensitive to changes in the mean flow in the sense that the ratio is large, where K is a measure of the sensitivity of the wave force; α, N, and f are the radiative damping rate, buoyancy frequency, and Coriolis parameter, respectively; and and are the horizontal and vertical length scales of the heating, respectively. Furthermore, in the “narrow heating” regime where this ratio is large, the structure of the meridional circulation response is only weakly dependent on the details of the wave force. The scaling arguments are verified by experiments in a dry dynamical circulation model. Consistent with the scaling prediction, the regime does not apply when the width of the imposed heating is increased. The narrow-heating regime is demonstrated to be relevant to the double peak in tropical lower-stratospheric upwelling considered in a companion paper, supporting the hypothesis that this feature is radiatively driven. Similar arguments are applied to show that a narrow zonally symmetric applied mechanical forcing is primarily balanced by a change in wave force. This provides an explanation for the recently identified compensation between resolved and parameterized waves in driving modeled trends in the Brewer–Dobson circulation.

Full access
Alison Ming, Peter Hitchcock, and Peter Haynes

Abstract

The processes responsible for double-peak latitudinal structures in the time-averaged tropical lower-stratospheric upwelling, centered near 70 hPa and 20°N/S, previously noted in ERA-Interim and other reanalysis and model datasets, are considered. It is demonstrated that the structure of the wave force resolved by ERA-Interim consistently balances the angular momentum transport associated with the double peak. Analysis of the corresponding structures in diabatic heating rates from ERA-Interim indicates that the peaks arise predominantly from the meridional structure in ozone concentrations and the associated absorption of both shortwave and longwave radiation. Additional smaller contributions arise from local absorption of longwave radiation emitted from the relatively warm layers above and below, as well as from cloud-related radiative effects and nonradiative diabatic heating. The temperature at 70 hPa is slightly higher near 20°N/S than at the equator, opposite of what would be expected if the latitudinal structure in radiative heating were associated with local relaxation. It is proposed on the basis of this analysis that the primary cause of the peaks in upwelling is the externally imposed (i.e., nonrelaxational) part of the radiative heating field. The dynamical plausibility of this hypothesis is investigated in a companion paper.

Full access
Peter Hitchcock, Theodore G. Shepherd, and Shigeo Yoden

Abstract

The validity of approximating radiative heating rates in the middle atmosphere by a local linear relaxation to a reference temperature state (i.e., “Newtonian cooling”) is investigated. Using radiative heating rate and temperature output from a chemistry–climate model with realistic spatiotemporal variability and realistic chemical and radiative parameterizations, it is found that a linear regression model can capture more than 80% of the variance in longwave heating rates throughout most of the stratosphere and mesosphere, provided that the damping rate is allowed to vary with height, latitude, and season. The linear model describes departures from the climatological mean, not from radiative equilibrium. Photochemical damping rates in the upper stratosphere are similarly diagnosed. Three important exceptions, however, are found. The approximation of linearity breaks down near the edges of the polar vortices in both hemispheres. This nonlinearity can be well captured by including a quadratic term. The use of a scale-independent damping rate is not well justified in the lower tropical stratosphere because of the presence of a broad spectrum of vertical scales. The local assumption fails entirely during the breakup of the Antarctic vortex, where large fluctuations in temperature near the top of the vortex influence longwave heating rates within the quiescent region below. These results are relevant for mechanistic modeling studies of the middle atmosphere, particularly those investigating the final Antarctic warming.

Full access
Peter Hitchcock, Theodore G. Shepherd, and Gloria L. Manney

Abstract

A novel diagnostic tool is presented, based on polar-cap temperature anomalies, for visualizing daily variability of the Arctic stratospheric polar vortex over multiple decades. This visualization illustrates the ubiquity of extended-time-scale recoveries from stratospheric sudden warmings, termed here polar-night jet oscillation (PJO) events. These are characterized by an anomalously warm polar lower stratosphere that persists for several months. Following the initial warming, a cold anomaly forms in the middle stratosphere, as does an anomalously high stratopause, both of which descend while the lower-stratospheric anomaly persists. These events are characterized in four datasets: Microwave Limb Sounder (MLS) temperature observations; the 40-yr ECMWF Re-Analysis (ERA-40) and Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalyses; and an ensemble of three 150-yr simulations from the Canadian Middle Atmosphere Model. The statistics of PJO events in the model are found to agree very closely with those of the observations and reanalyses.

The time scale for the recovery of the polar vortex following sudden warmings correlates strongly with the depth to which the warming initially descends. PJO events occur following roughly half of all major sudden warmings and are associated with an extended period of suppressed wave-activity fluxes entering the polar vortex. They follow vortex splits more frequently than they do vortex displacements. They are also related to weak vortex events as identified by the northern annular mode; in particular, those weak vortex events followed by a PJO event show a stronger tropospheric response. The long time scales, predominantly radiative dynamics, and tropospheric influence of PJO events suggest that they represent an important source of conditional skill in seasonal forecasting.

Full access
Peter Hitchcock, Peter H. Haynes, William J. Randel, and Thomas Birner

Abstract

A configuration of an idealized general circulation model has been obtained in which a deep, stratospheric, equatorial, westerly jet is established that is spontaneously and quasi-periodically disrupted by shallow easterly jets. Similar to the disruption of the quasi-biennial oscillation (QBO) observed in early 2016, meridional fluxes of wave activity are found to play a central role. The possible relevance of two feedback mechanisms to these disruptions is considered. The first involves the secondary circulation produced in the shear zones on the upper and lower flanks of the easterly jet. This is found to play a role in maintaining the aspect ratio of the emerging easterly jet. The second involves the organization of the eddy fluxes by the mean flow: the presence of a weak easterly anomaly within a tall, tropical, westerly jet is demonstrated to produce enhanced and highly focused wave activity fluxes that reinforce and strengthen the easterly anomalies. The eddies appear to be organized by the formation of strong potential vorticity gradients on the subtropical flanks of the easterly anomaly. Similar wave activity and potential vorticity structures are found in the ERA-Interim for the observed QBO disruption, indicating this second feedback was active then.

Full access
Isla R Simpson, Peter Hitchcock, Richard Seager, Yutian Wu, and Patrick Callaghan

Abstract

General circulation models display a wide range of future predicted changes in the Northern Hemisphere winter stratospheric polar vortex. The downward influence of this stratospheric uncertainty on the troposphere has previously been inferred from regression analyses across models and is thought to contribute to model spread in tropospheric circulation change. Here we complement such regression analyses with idealized experiments using one model where different changes in the zonal-mean stratospheric polar vortex are artificially imposed to mimic the extreme ends of polar vortex change simulated by models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The influence of the stratospheric vortex change on the tropospheric circulation in these experiments is quantitatively in agreement with the inferred downward influence from across-model regressions, indicating that such regressions depict a true downward influence of stratospheric vortex change on the troposphere below. With a relative weakening of the polar vortex comes a relative increase in Arctic sea level pressure (SLP), a decrease in zonal wind over the North Atlantic, drying over northern Europe, and wetting over southern Europe. The contribution of stratospheric vortex change to intermodel spread in these quantities is assessed in the CMIP5 models. The spread, as given by 4 times the across-model standard deviation, is reduced by roughly 10% on regressing out the contribution from stratospheric vortex change, while the difference between models on extreme ends of the distribution in terms of their stratospheric vortex change can reach up to 50% of the overall model spread for Arctic SLP and 20% of the overall spread in European precipitation.

Full access