Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Peter L. Jackson x
  • All content x
Clear All Modify Search
Chibuike Onwukwe and Peter L. Jackson

Abstract

Evaluation of downscaled meteorological information is crucial to identifying model behaviors that may propagate to end applications such as the simulation of local air quality. This study conducted and assessed yearlong simulations of hourly meteorological conditions over the Terrace–Kitimat Valley of northwestern British Columbia, Canada, at 1-km horizontal gridding for six PBL schemes in the Weather and Forecasting (WRF) Model, version 4.0. In terms of key surface meteorological variables that affect air quality, simulations over land demonstrated better skill for specific humidity and wind direction than for air temperature and wind speed. Spatial differences in modeled atmospheric properties and vertical profiles, especially for moisture content, were used to diagnose the relative capacity of each PBL scheme to represent pollutant dispersion and dilution. Stable conditions at night increased suppression of boundary layer mixing by the nonlocal Yonsei University (YSU) scheme when compared with suppression by the local eddy-diffusion component of the Asymmetric Convective Model, version 2 (ACM2), scheme, resulting in decreased wind speed and ambient temperature but moister air with the YSU scheme. The weakening of mixing by the Mellor–Yamada–Nakanishi–Niino (MYNN3) scheme with inland distance suggested that higher-order, nonlocal transport is sensitive to increasing topographic steepness toward the northern part of the valley. Disparities in mixing strengths among PBL schemes were greater in the summer when conditions were generally less stable with moist, warm air blowing inland than in winter when the valley channels cold, stable air from the interior. Increased convection in daytime led to greater entrainment of air from aloft and a thicker PBL with the YSU scheme than with the ACM2 scheme in summer while increasing countergradient transport in the MYNN3 scheme that reduces dilution.

Restricted access
Peter L. Jackson and D. G. Steyn

Abstract

Gap winds in Howe Sound, British Columbia, are described and placed in context by reviewing studies of similar phenomena in other locations. An observational program consisting of a surface mesonetwork and vertical soundings shows that gap winds vary considerably along and across the channel, as well as vertically. Wind strength generally increases down channel, and strongest winds are found below 1000-m depth. Results from application of a 3D mesoscale numerical model to a gap wind case compare reasonably well with observations. Model output reveals more details of horizontal and especially vertical flow structure than is possible from observations. Model vertical cross sections and Froude number output indicate similarity with hydraulic flow. This is further substantiated by a force-balance analysis of model output.

Full access
Peter L. Jackson and D. G. Steyn

Abstract

A simple shallow-water model of gap wind in a channel that is based upon hydraulic theory is presented and compared with observations and output from a 3D mesoscale numerical model. The model is found to be successful in simulating gap winds. The speed and depth of gap wind flow is strongly controlled by topography. Horizontal or vertical channel contractions can act to force strong, shallow supercritical flow downwind and light, deep subcritical flow upwind. Force-balance analysis of the hydraulic model output confirms mesoscale model results and indicates that the prime force balance in gap wind is between external pressure gradient and friction for supercritical flow and between external pressure gradient and height pressure gradient for subcritical flow. This force balance changes near channel controls when the balance is between advection and height pressure gradient. Sensitivity analyses show positive sensitivity of gap wind speed to changes in discharge and external pressure gradient, negative sensitivity to changes in friction and boundary layer height at the channel exit, and mixed sensitivity of gap wind speed to changes in reduced gravity.

Full access
Shucai Guan, Peter L. Jackson, and Chris J. C. Reason

Abstract

The coastal trapped disturbance (CTD) of 15–17 May 1985 represents an example of a strong mesoscale trapped event along the west coast of North America with abrupt transitions in many basic meteorological parameters. In this study, a comparison between observations and a numerical simulation of this event using the Regional Atmospheric Modeling System (RAMS) is presented. The model is shown to realistically reproduce CTD characteristics such as the coastal transition from northerly to southerly flow, as a mesoscale coastal ridge of higher pressure with associated drops in marine-layer temperature propagates northward along the west coast of North America. Simulated sea level pressure and temperature fields near the surface match well with observations, especially at the synoptic scale. The model realistically simulates mesoscale sea level pressure and 6-h pressure changes during the event. The modeled hourly time evolution of sea level pressure and the southerly transitions at a series of coastal stations and buoys also agree reasonably well with observations. The marine boundary layer is not well initialized or very well represented in the model, suggesting that, for this particular case, the details of the boundary layer are not crucial in the evolution of the CTD. It is suggested that the RAMS model can be usefully applied to investigate CTD evolution.

Full access
Peter L. Jackson, Chris J. C. Reason, and Shucai Guan

Abstract

A detailed analysis of a simulation of a coastal trapped disturbance (CTD) using the Colorado State University Regional Atmospheric Modeling System (RAMS) is presented. The CTD considered (15–18 May 1985) represents an example of a strong mesoscale trapped event with abrupt gravity current–like transitions in many meteorological parameters, and which was closely tied to the synoptic forcing. Propagation of this event along the west coast of North America occurred from initiation in the Southern California Bight–Baja California coastal region to the northern tip of Vancouver Island, and the event appeared to have no difficulty in negotiating significant bends or gaps in the coastal mountains unlike some other events that have ceased or stalled near Cape Mendocino, Point Arena, and the mouth of the Columbia River.

It is found that warm offshore flow ahead of the CTD, and cool onshore flow in the Southern California Bight–northern Baja California coastal region, both driven by the westward tracking of a synoptic low, are very important for initiation, and subsequent propagation, of the model CTD, similar to observations. Convergence of the initial onshore cool flow in the south combined with warm offshore flow in the north lead to a northward-directed pressure gradient and, hence, a southerly wind transition. The adjustment timescale of the onshore flow to form the southerlies of the CTD is found to be consistent with expectations from theory.

During the propagating stage of the event, the pressure gradient and Coriolis terms were found to be most important for the meridional wind tendency, with advection and diffusion making smaller contributions. Consistent with semigeostrophic theory for CTD, the length scale in the across-mountain direction of the model CTD is much less than the along-mountain scale. Although the model transitions in winds, pressure, and temperature are not as sharp as observed (attributed to the lack of boundary layer structure in the NCEP fields used for model initialization), there is some signature of the gravity current nature of the event.

Decay of the event occurred when the favorable synoptic forcing related to the synoptic low moved to the northwest. There appeared to be no evidence of any topographic influence on the decay or termination of this particular event, unlike for several other cases.

Taken together, this and the previous validation study suggest that RAMS can be usefully employed to better understand the nature of at least these strong CTD events.

Full access
Timothy D. Finnigan, Jason A. Vine, Peter L. Jackson, Susan E. Allen, Gregory A. Lawrence, and Douw G. Steyn

Abstract

Strong gap winds in Howe Sound, British Columbia, are simulated using a small-scale physical model. Model results are presented and compared with observations recorded in Howe Sound during a severe gap wind event in December 1992. Hydraulic theory is utilized to explain along-channel variation in wind. Field observations affirm the findings of the physical modeling with both, indicating the presence and location of controls and hydraulic jumps in the wind layer. Hydraulic behavior is found to change as the synoptic pressure gradient and the flow rate increase. In particular, field results indicate two distinct hydraulic situations: one during relatively weak wind, the other, which is more strongly controlled, during the period of peak wind. An additional comparison is made with output from the computer model hydmod of Jackson and Steyn. Numerical simulations, configured for the conditions present in Howe Sound during the December 1992 event, indicate channel hydraulics (and thus spatial wind speed variation) closely resembling the physical model and field results.

Full access
Sara H. Knox, Robert B. Jackson, Benjamin Poulter, Gavin McNicol, Etienne Fluet-Chouinard, Zhen Zhang, Gustaf Hugelius, Philippe Bousquet, Josep G. Canadell, Marielle Saunois, Dario Papale, Housen Chu, Trevor F. Keenan, Dennis Baldocchi, Margaret S. Torn, Ivan Mammarella, Carlo Trotta, Mika Aurela, Gil Bohrer, David I. Campbell, Alessandro Cescatti, Samuel Chamberlain, Jiquan Chen, Weinan Chen, Sigrid Dengel, Ankur R. Desai, Eugenie Euskirchen, Thomas Friborg, Daniele Gasbarra, Ignacio Goded, Mathias Goeckede, Martin Heimann, Manuel Helbig, Takashi Hirano, David Y. Hollinger, Hiroki Iwata, Minseok Kang, Janina Klatt, Ken W. Krauss, Lars Kutzbach, Annalea Lohila, Bhaskar Mitra, Timothy H. Morin, Mats B. Nilsson, Shuli Niu, Asko Noormets, Walter C. Oechel, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Karina V. R. Schäfer, Hans Peter Schmid, Narasinha Shurpali, Oliver Sonnentag, Angela C. I. Tang, Masahito Ueyama, Rodrigo Vargas, Timo Vesala, Eric J. Ward, Lisamarie Windham-Myers, Georg Wohlfahrt, and Donatella Zona

Abstract

This paper describes the formation of, and initial results for, a new FLUXNET coordination network for ecosystem-scale methane (CH4) measurements at 60 sites globally, organized by the Global Carbon Project in partnership with other initiatives and regional flux tower networks. The objectives of the effort are presented along with an overview of the coverage of eddy covariance (EC) CH4 flux measurements globally, initial results comparing CH4 fluxes across the sites, and future research directions and needs. Annual estimates of net CH4 fluxes across sites ranged from −0.2 ± 0.02 g C m–2 yr–1 for an upland forest site to 114.9 ± 13.4 g C m–2 yr–1 for an estuarine freshwater marsh, with fluxes exceeding 40 g C m–2 yr–1 at multiple sites. Average annual soil and air temperatures were found to be the strongest predictor of annual CH4 flux across wetland sites globally. Water table position was positively correlated with annual CH4 emissions, although only for wetland sites that were not consistently inundated throughout the year. The ratio of annual CH4 fluxes to ecosystem respiration increased significantly with mean site temperature. Uncertainties in annual CH4 estimates due to gap-filling and random errors were on average ±1.6 g C m–2 yr–1 at 95% confidence, with the relative error decreasing exponentially with increasing flux magnitude across sites. Through the analysis and synthesis of a growing EC CH4 flux database, the controls on ecosystem CH4 fluxes can be better understood, used to inform and validate Earth system models, and reconcile differences between land surface model- and atmospheric-based estimates of CH4 emissions.

Free access