Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Petra M. Klein x
  • All content x
Clear All Modify Search
Timothy J. Wagner, Petra M. Klein, and David D. Turner

Abstract

Mobile systems equipped with remote sensing instruments capable of simultaneous profiling of temperature, moisture, and wind at high temporal resolutions can offer insights into atmospheric phenomena that the operational network cannot. Two recently developed systems, the Space Science and Engineering Center (SSEC) Portable Atmospheric Research Center (SPARC) and the Collaborative Lower Atmosphere Profiling System (CLAMPS), have already experienced great success in characterizing a variety of phenomena. Each system contains an Atmospheric Emitted Radiance Interferometer for thermodynamic profiling and a Halo Photonics Stream Line Doppler wind lidar for kinematic profiles. These instruments are augmented with various in situ and remote sensing instruments to provide a comprehensive assessment of the evolution of the lower troposphere at high temporal resolution (5 min or better). While SPARC and CLAMPS can be deployed independently, the common instrument configuration means that joint deployments with well-coordinated data collection and analysis routines are easily facilitated.

In the past several years, SPARC and CLAMPS have participated in numerous field campaigns, which range from mesoscale campaigns that require the rapid deployment and teardown of observing systems to multiweek fixed deployments, providing crucial insights into the behavior of many different atmospheric boundary layer processes while training the next generation of atmospheric scientists. As calls for a nationwide ground-based profiling network continue, SPARC and CLAMPS can play an important role as test beds and prototype nodes for such a network.

Open access
David Bodine, Petra M. Klein, Sean C. Arms, and Alan Shapiro

Abstract

Temperature and wind data from a rural micronet and nearby site of the Oklahoma Mesonet are analyzed to study the frequency, strength, and formation processes of cold-pool events in a region with gentle terrain. Spatial analyses were performed for a 2-yr-long temperature record from 26 temperature/humidity surface stations, deployed across a 120 m × 320 m micronet located in a region of gently sloped terrain with maximum elevation changes of ∼25 m. Cold pools frequently formed at the base of a gentle slope in a small depression of only ∼6-m depth that is also sheltered by trees. The strength of each cold-pool event was classified according to a cold-pool index based on average nocturnal temperature perturbations within the cold-pool region. Wind data collected with sonic anemometers on a 15-m-tall tower at the micronet for a period of three months (spring 2005) suggest that flow sheltering by vegetation plays an important role in the cold-pool formation. The wind data also show signatures of katabatic flow for about 50% of the strong cold-pool events. However, a heat budget analysis for these nights suggested that the katabatic flows were associated with warm-air advection along the slope and that if katabatic jets had penetrated the cold pool, they would have produced substantial warming in the region of the cold pool. Since such warming was not observed, it is concluded that the katabatic jets did not actually penetrate the cold pool but likely flowed over it. An analysis of Richardson numbers demonstrates that cold-pool formation frequently occurs under strongly stable conditions that tend to suppress vertical turbulent mixing in the surface layer. Observations that significant temperature changes can occur even with elevation changes on the order of 6 m have important implications in agriculture as well as in data assimilation.

Full access
Alan Shapiro, Petra M. Klein, Sean C. Arms, David Bodine, and Matthew Carney

The Lake Thunderbird Micronet is a dense network of environmental sensors and a meteorological tower situated on ~10 acres of rural land in central Oklahoma. The Micronet was established in the spring of 2002 as part of a grassroots effort by a team of faculty and researchers at the University of Oklahoma to provide unique training and research opportunities for undergraduate and graduate students in meteorology and related environmental sciences. The history and design of the Micronet and use of the Micronet in undergraduate and graduate student training and research are described. Examples of interesting phenomena sampled at the Micronet are also presented.

Full access
Xiao-Ming Hu, Petra M. Klein, Ming Xue, Julie K. Lundquist, Fuqing Zhang, and Youcun Qi

Abstract

Previous analysis of Oklahoma City (OKC), Oklahoma, temperature data indicated that urban heat islands (UHIs) frequently formed at night and the observed UHI intensity was variable (1°–4°C). The current study focuses on identifying meteorological phenomena that contributed to the variability of nocturnal UHI intensity in OKC during July 2003. Two episodes, one with a strong UHI signature and one with a weak signature, were studied in detail using observations along with simulations with the Weather Research and Forecasting model. Mechanical mixing associated with low-level jets (LLJs) played a critical role in moderating the nocturnal UHI intensity. During nights with weak LLJs or in the absence of LLJs, vertical mixing weakened at night and strong temperature inversions developed in the rural surface layer as a result of radiative cooling. The shallow stable boundary layer (SBL < 200 m) observed under such conditions was strongly altered inside the city because rougher and warmer surface characteristics caused vertical mixing that eroded the near-surface inversion. Accordingly, temperatures measured within the urban canopy layer at night were consistently higher than at nearby rural sites of comparable height (by ~3°–4°C). During nights with strong LLJs, however, the jets facilitated enhanced turbulent mixing in the nocturnal boundary layer. As a consequence, atmospheric stability was much weaker and urban effects played a much less prominent role in altering the SBL structure; therefore, UHI intensities were smaller (<1°C) during strong LLJs. The finding that rural inversion strength can serve as an indicator for UHI intensity highlights that the structure of the nocturnal boundary layer is important for UHI assessments.

Full access
Gretchen L. Mullendore, Mary C. Barth, Petra M. Klein, and James H. Crawford

Abstract

Historically, atmospheric field campaigns typically focused on either meteorology or chemistry with very limited complementary observations from the other discipline. In contrast, a growing number of researchers are working across subdisciplines to include meteorological and chemical measurements when planning field campaigns to increase the value of the collected datasets for subsequent analyses. Including select trace gas measurements should be intrinsic to certain dynamics campaigns, as they can add insights into dynamical processes. This paper highlights the mutual benefits of joint dynamics–chemistry campaigns by reporting on a small sample of examples across a broad range of meteorological scales to demonstrate the value of this strategy, with focus on the Deep Convective Clouds and Chemistry (DC3) campaign as a recent example. General recommendations are presented as well as specific recommendations of chemical species appropriate for a range of meteorological temporal and spatial scales.

Full access
Xiao-Ming Hu, Ming Xue, Petra M. Klein, Bradley G. Illston, and Sheng Chen

Abstract

Many studies have investigated urban heat island (UHI) intensity for cities around the world, which is normally quantified as the temperature difference between urban location(s) and rural location(s). A few open questions still remain regarding the UHI, such as the spatial distribution of UHI intensity, temporal (including diurnal and seasonal) variation of UHI intensity, and the UHI formation mechanism. A dense network of atmospheric monitoring sites, known as the Oklahoma City (OKC) Micronet (OKCNET), was deployed in 2008 across the OKC metropolitan area. This study analyzes data from OKCNET in 2009 and 2010 to investigate OKC UHI at a subcity spatial scale for the first time. The UHI intensity exhibited large spatial variations over OKC. During both daytime and nighttime, the strongest UHI intensity is mostly confined around the central business district where land surface roughness is the highest in the OKC metropolitan area. These results do not support the roughness warming theory to explain the air temperature UHI in OKC. The UHI intensity of OKC increased prominently around the early evening transition (EET) and stayed at a fairly constant level throughout the night. The physical processes during the EET play a critical role in determining the nocturnal UHI intensity. The near-surface rural temperature inversion strength was a good indicator for nocturnal UHI intensity. As a consequence of the relatively weak near-surface rural inversion, the strongest nocturnal UHI in OKC was less likely to occur in summer. Other meteorological factors (e.g., wind speed and cloud) can affect the stability/depth of the nighttime boundary layer and can thus modulate nocturnal UHI intensity.

Full access
Elizabeth N. Smith, Jeremy A. Gibbs, Evgeni Fedorovich, and Petra M. Klein

Abstract

Previous studies have shown that the Weather Research and Forecasting (WRF) Model often underpredicts the strength of the Great Plains nocturnal low-level jet (NLLJ), which has implications for weather, climate, aviation, air quality, and wind energy in the region. During the Lower Atmospheric Boundary Layer Experiment (LABLE) conducted in 2012, NLLJs were frequently observed at high temporal resolution, allowing for detailed documentation of their development and evolution throughout the night. Ten LABLE cases with observed NLLJs were chosen to systematically evaluate the WRF Model’s ability to reproduce the observed NLLJs. Model runs were performed with 4-, 2-, and 1-km horizontal spacing and with the default stretched vertical grid and a nonstretched 40-m vertically spaced grid to investigate which grid configurations are optimal for NLLJ modeling. These tests were conducted using three common boundary layer parameterization schemes: Mellor–Yamada Nakanishi Niino, Yonsei University, and Quasi-Normal Scale Elimination. It was found that refining horizontal spacing does not necessarily improve the modeled NLLJ wind. Increasing the number of vertical levels on a non-stretched grid provides more information about the structure of the NLLJ with some schemes, but the benefit is limited by computational expense and model stability. Simulations of the NLLJ were found to be less sensitive to boundary layer parameterization than to grid configuration. The Quasi-Normal Scale Elimination scheme was chosen for future NLLJ simulation studies.

Full access
Elizabeth N. Smith, Joshua G. Gebauer, Petra M. Klein, Evgeni Fedorovich, and Jeremy A. Gibbs

Abstract

During the 2015 Plains Elevated Convection at Night (PECAN) field campaign, several nocturnal low-level jets (NLLJs) were observed with integrated boundary layer profiling systems at multiple sites. This paper gives an overview of selected PECAN NLLJ cases and presents a comparison of high-resolution observations with numerical simulations using the Weather Research and Forecasting (WRF) Model. Analyses suggest that simulated NLLJs typically form earlier than the observed NLLJs. They are stronger than the observed counterparts early in the event, but weaker than the observed NLLJs later in the night. However, sudden variations in the boundary layer winds, height of the NLLJ maximum and core region, and potential temperature fields are well captured by the WRF Model. Simulated three-dimensional fields are used for a more focused analysis of PECAN NLLJ cases. While previous studies often related changes in the thermal structure of the nocturnal boundary layer and sudden mixing events to local features, we hypothesize that NLLJ spatial evolution plays an important role in such events. The NLLJ is shown to have heterogeneous depth, wind speed, and wind direction. This study offers detailed documentation of the heterogeneous NLLJ moving down the slope of the Great Plains overnight. As the NLLJ evolves, westerly advection becomes significant. Buoyancy-related mechanisms are proposed to explain NLLJ heterogeneity and down-slope motion. Spatial and temporal heterogeneity of the NLLJ is suggested as a source of the often observed and simulated updrafts during PECAN cases and as a possible mechanism for nocturnal convection initiation. The spatial and temporal characteristics of the NLLJ are interconnected and should not be treated independently.

Full access
Kodi L. Nemunaitis-Berry, Petra M. Klein, Jeffrey B. Basara, and Evgeni Fedorovich

Abstract

As NWP and climate models continue to evolve toward finer grid spacing, efforts have been undertaken to better represent urban effects. For this study, the single-layer urban canopy model (SLUCM) of the High-Resolution Land Data Assimilation System (HRLDAS) and WRF Model was used to investigate the sensitivity of near-surface air temperatures and energy fluxes to SLUCM parameters in uncoupled (land) and coupled (land–atmosphere) predictions. Output from HRLDAS and WRF was compared with observations from the Oklahoma Mesonet and Joint Urban 2003 experiment. Variations in roof albedo (0.04–0.4) produced 40–135 W m−2 changes in net radiation and sensible heat fluxes. Sensible and ground heat fluxes varied by 40–100 W m−2 with changes in roof thermal conductivity (0.05–1.4). The urban fraction was found to be the only SLUCM parameter to significantly impact latent heat fluxes. Near-surface air temperatures, particularly during the daytime, did not show significant variations with SLUCM parameters (remaining within the 0.5-K range). Differences in urban air temperatures due to the change in boundary layer scheme were greater than the temperature changes due to SLUCM parameter variations. The sensitivity of near-surface air temperatures to SLUCM parameters depended on the method used to calculate the skin temperature of the impervious surface. For all simulations, predicted 2-m urban air temperatures were consistently higher than observations, with deviations approaching 8 K during the day and below 3 K at night. These large errors affected the model’s skill in reproducing the diurnal cycle of UHI intensity.

Full access
Ryann A. Wakefield, Jeffrey B. Basara, Jason C. Furtado, Bradley G. Illston, Craig. R. Ferguson, and Petra M. Klein

Abstract

Global “hot spots” for land–atmosphere coupling have been identified through various modeling studies—both local and global in scope. One hot spot that is common to many of these analyses is the U.S. southern Great Plains (SGP). In this study, we perform a mesoscale analysis, enabled by the Oklahoma Mesonet, that bridges the spatial and temporal gaps between preceding local and global analyses of coupling. We focus primarily on east–west variations in seasonal coupling in the context of interannual variability over the period spanning 2000–15. Using North American Regional Reanalysis (NARR)-derived standardized anomalies of convective triggering potential (CTP) and the low-level humidity index (HI), we investigate changes in the covariance of soil moisture and the atmospheric low-level thermodynamic profile during seasonal hydrometeorological extremes. Daily CTP and HI z scores, dependent upon climatology at individual NARR grid points, were computed and compared to in situ soil moisture observations at the nearest mesonet station to provide nearly collocated annual composites over dry and wet soils. Extreme dry and wet year CTP and HI z-score distributions are shown to deviate significantly from climatology and therefore may constitute atmospheric precursors to extreme events. The most extreme rainfall years differ from climatology but also from one another, indicating variability in the strength of land–atmosphere coupling during these years. Overall, the covariance between soil moisture and CTP/HI is much greater during drought years, and coupling appears more consistent. For example, propagation of drought during 2011 occurred under antecedent CTP and HI conditions that were identified by this study as being conducive to positive dry feedbacks demonstrating potential utility of this framework in forecasting regional drought propagation.

Full access