Search Results

You are looking at 1 - 10 of 30 items for

  • Author or Editor: Petros Ioannou x
  • Refine by Access: All Content x
Clear All Modify Search
Petros J. Ioannou

Abstract

Recently, a new theoretical and conceptual model of quasigeostrophic turbulence has been advanced in which eddy variance is regarded as being maintained by transient growth of perturbations arising from sources including the nonlinear interactions among the eddies, but crucially without a direct contribution of unstable modal growth to the maintenance of variance. This theory is based on the finding that stochastic forcing of the subcritical atmospheric flow supports variance arising from induced transfer of energy from the background flow to the disturbance field that substantially exceeds the variance expected from the decay rate of the associated normal modes in an equivalent normal system. Herein the authors prove that such amplification of variance is a general property of the stochastic dynamics of systems governed by nonnormal evolution operators and that consequently the response of the atmosphere to unbiased forcing is always underestimated when consideration is limited to the response of the system's individual normal modes to stochastic excitation.

Full access
Petros Ioannou and Richard S. Lindzen

Abstract

The baroclinic instability of a frontal mean state is investigated using the WKBJ approximation. The results are compared with numerical calculations performed on the same mean state. Excellent agreement (within 5%) is found for jets whose half-width is as small as a Rossby radius of deformation. For jets 20% broader, the agreement is almost perfect.

Full access
Eli Tziperman and Petros J. Ioannou

Abstract

The physical mechanisms of transient amplification of initial perturbations to the thermohaline circulation (THC), and of the optimal stochastic forcing of THC variability, are discussed using a simple meridional box model. Two distinct mechanisms of transient amplification are found. One such mechanism, with a transient amplification timescale of a couple of years, involves an interaction between the THC induced by rapidly decaying sea surface temperature anomalies and the THC induced by the slower-decaying salinity mode. The second mechanism of transient amplification involves an interaction between different slowly decaying salinity modes and has a typical growth timescale of decades. The optimal stochastic atmospheric forcing of heat and freshwater fluxes are calculated as well. It is shown that the optimal forcing induces low-frequency THC variability by exciting the salinity-dominated variability modes of the THC.

Full access
Petros Ioannou and Richard S. Lindzen

Abstract

A formalism is developed for the calculation of baroclinic instability for barotropically stable jets. The formalism is applied to jet versions of both the Eady and Charney problems. It is found that jets act to confine instabilities meridionally, thus internally determining meridional wave scales. Once this internally determined meridional scale is taken into account, results correspond plausibly to classical results without a jet.

Consideration of the effect of such instabilities on the mean flow shows that they act to concentrate the jet barotropically while simultaneously reducing baroclinicity.

Full access
Brian F. Farrell and Petros J. Ioannou

Abstract

Synoptic-scale eddy variance and fluxes of heat and momentum in midlatitude jets are sensitive to small changes in mean jet velocity, dissipation, and static stability. In this work the change in the jet producing the greatest increase in variance or flux is determined. Remarkably, a single jet structure change completely characterizes the sensitivity of a chosen quadratic statistical quantity to modification of the mean jet in the sense that an arbitrary change in the jet influences a chosen statistical quantity in proportion to the projection of the change on this single optimal structure. The method used extends previous work in which storm track statistics were obtained using a stochastic model of jet turbulence.

Full access
Brian F. Farrell and Petros J. Ioannou

Abstract

Temporally distributed deterministic and stochastic excitation of the tangent linear forecast system governing forecast error growth and the tangent linear observer system governing assimilation error growth is examined. The method used is to determine the optimal set of distributed deterministic and stochastic forcings of the forecast and observer systems over a chosen time interval. Distributed forcing of an unstable system addresses the effect of model error on forecast error in the presumably unstable forecast error system. Distributed forcing of a stable system addresses the effect on the assimilation of model error in the presumably stable data assimilation system viewed as a stable observer. In this study, model error refers both to extrinsic physical error forcing, such as that which arises from unresolved cumulus activity, and to intrinsic error sources arising from imperfections in the numerical model and in the physical parameterizations.

Full access
Brian F. Farrell and Petros J. Ioannou

Abstract

Perturbation growth in uncertain systems associated with fluid flow is examined concentrating on deriving, solving, and interpreting equations governing the ensemble mean covariance. Covariance evolution equations are obtained for fluctuating operators and illustrative physical examples are solved. Stability boundaries are obtained constructively in terms of the amplitude and structure of operator fluctuation required for existence of bounded second-moment statistics in an uncertain system. The forced stable uncertain system is identified as a primary physical realization of second-moment dynamics by using an ergodic assumption to make the physical connection between ensemble statistics of stable stochastically excited systems and observations of time mean quantities. Optimal excitation analysis plays a central role in generalized stability theory and concepts of optimal deterministic and stochastic excitation of certain systems are extended in this work to uncertain systems. Remarkably, the optimal excitation problem has a simple solution in uncertain systems: there is a pure structure producing the greatest expected ensemble perturbation growth when this structure is used as an initial condition, and a pure structure that is most effective in exciting variance when this structure is used to stochastically force the system distributed in time.

Optimal excitation analysis leads to an interpretation of the EOF structure of the covariance both for the case of optimal initial excitation and for the optimal stochastic excitation distributed in time that maintains the statistically steady state. Concepts of pure and mixed states are introduced for interpreting covariances and these ideas are used to illustrate fundamental limitations on inverting covariances for structure in stochastic systems in the event that only the covariance is known.

Full access
Brian F. Farrell and Petros J. Ioannou

Abstract

Perturbation growth in uncertain systems is examined and related to previous work in which linear stability concepts were generalized from a perspective based on the nonnormality of the underlying linear operator. In this previous work the linear operator, subject to an initial perturbation or a stochastic forcing distributed in time, was either fixed or time varying, but in either case the operator was certain. However, in forecast and climate studies, complete knowledge of the dynamical system being perturbed is generally lacking; nevertheless, it is often the case that statistical properties characterizing the variability of the dynamical system are known. In the present work generalized stability theory is extended to such uncertain systems. The limits in which fluctuations about the mean of the operator are correlated over time intervals, short and long, compared to the timescale of the mean operator are examined and compared with the physically important transitional case of operator fluctuation on timescales comparable to the timescales of the mean operator. Exact and asymptotically valid equations for transient ensemble mean and moment growth in uncertain systems are derived and solved. In addition, exact and asymptotically valid equations for the ensemble mean response of a stable uncertain system to deterministic forcing are derived and solved. The ensemble mean response of the forced stable uncertain system obtained from this analysis is interpreted under the ergodic assumption as equal to the time mean of the state of the uncertain system as recorded by an averaging instrument. Optimal perturbations are obtained for the ensemble mean of an uncertain system in the case of harmonic forcing. Finally, it is shown that the remarkable systematic increase in asymptotic growth rate with moment in uncertain systems occurs only in the context of the ensemble.

Full access
Brian F. Farrell and Petros J. Ioannou

Abstract

Turbulent flows are often observed to be organized into large-spatial-scale jets such as the familiar zonal jets in the upper levels of the Jovian atmosphere. These relatively steady large-scale jets are not forced coherently but are maintained by the much smaller spatial- and temporal-scale turbulence with which they coexist. The turbulence maintaining the jets may arise from exogenous sources such as small-scale convection or from endogenous sources such as eddy generation associated with baroclinic development processes within the jet itself. Recently a comprehensive theory for the interaction of jets with turbulence has been developed called stochastic structural stability theory (SSST). In this work SSST is used to study the formation of multiple jets in barotropic turbulence in order to understand the physical mechanism producing and maintaining these jets and, specifically, to predict the jet amplitude, structure, and spacing. These jets are shown to be maintained by the continuous spectrum of shear waves and to be organized into stable attracting states in the mutually adjusted mean flow and turbulence fields. The jet structure, amplitude, and spacing and the turbulence level required for emergence of jets can be inferred from these equilibria. For weak but supercritical turbulence levels the jet scale is determined by the most unstable mode of the SSST system and the amplitude of the jets at equilibrium is determined by the balance between eddy forcing and mean flow dissipation. At stronger turbulence levels the jet amplitude saturates with jet spacing and amplitude satisfying the Rayleigh–Kuo stability condition that implies the Rhines scale. Equilibrium jets obtained with the SSST system are in remarkable agreement with equilibrium jets obtained in simulations of fully developed β-plane turbulence.

Full access
Brian F. Farrell and Petros J. Ioannou

Abstract

Asymptotic linear stability of time-dependent flows is examined by extending to nonautonomous systems methods of nonnormal analysis that were recently developed for studying the stability of autonomous systems. In the case of either an autonomous or a nonautonomous operator, singular value decomposition (SVD) analysis of the propagator leads to identification of a complete set of optimal perturbations ordered according to the extent of growth over a chosen time interval as measured in a chosen inner product generated norm. The long-time asymptotic structure in the case of an autonomous operator is the norm-independent, most rapidly growing normal mode while in the case of the nonautonomous operator it is the first Lyapunov vector that grows at the norm independent mean rate of the first Lyapunov exponent. While information about the first normal mode such as its structure, energetics, vorticity budget, and growth rate are easily accessible through eigenanalysis of the dynamical operator, analogous information about the first Lyapunov vector is less easily obtained. In this work the stability of time-dependent deterministic and stochastic dynamical operators is examined in order to obtain a better understanding of the asymptotic stability of time-dependent systems and the nature of the first Lyapunov vector. Among the results are a mechanistic physical understanding of the time-dependent instability process, necessary conditions on the time dependence of an operator in order for destabilization to occur, understanding of why the Rayleigh theorem does not constrain the stability of time-dependent flows, the dependence of the first Lyapunov exponent on quantities characterizing the dynamical system, and identification of dynamical processes determining the time-dependent structure of the first Lyapunov vector.

Full access