Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Philip Austin x
  • Refine by Access: All Content x
Clear All Modify Search
Ming Zhao and Philip H. Austin

Abstract

This paper is the second in a two-part series in which life cycles of six numerically simulated shallow cumulus clouds are systematically examined. The six clouds, selected from a single realization of a large-eddy simulation, grow as a series of pulses/thermals detached from the subcloud layer. All six clouds exhibit a coherent vortical circulation and a low buoyancy, low velocity trailing wake. The ascending cloud top (ACT), which contains this vortical circulation, is associated with a dynamic perturbation pressure field with high pressure located at the ascending frontal cap and low pressure below and on the downshear side of the maximum updrafts. Examination of the thermodynamic and kinematic structure, together with passive tracer experiments, suggests that this vortical circulation is primarily responsible for mixing between cloud and environment. As the cloud ACTs rise through the sheared environment, the low pressure, vortical circulation, and mixing are all strongly enhanced on the downshear side and weakened on the upshear side. Collapse of the ACT also occurs on the downshear side, with subsequent thermals ascending on the upshear side of their predecessors. The coherent core structure is maintained throughout the ACT ascent; mixing begins to gradually dilute the ACT core only in the upper half of the cloud's depth. The characteristic kinematic and dynamic structure of these simulated ACTs, together with their mixing behavior, corresponds closely to that of shedding thermals. These shallow simulated clouds, however, reach a maximum height of only about four ACT diameters so that ACT mixing differs from predictions of self-similar laboratory thermals.

Full access
Ming Zhao and Philip H. Austin

Abstract

This paper is the first in a two-part series in which the life cycles of numerically simulated shallow cumulus clouds are systematically examined. The life cycle data for six clouds with a range of cloud-top heights are isolated from an equilibrium trade cumulus field generated by a large-eddy simulation (LES) with a uniform resolution of 25 m. A passive subcloud tracer is used to partition the cloud life cycle transport into saturated and unsaturated components; the tracer shows that on average cumulus convection occurs in a region with time-integrated volume roughly 2 to 3 times that of the liquid-water-containing volume. All six clouds exhibit qualitatively similar vertical mass flux profiles with net downward mass transport at upper levels and net upward mass flux at lower levels. This downward mass flux comes primarily from the unsaturated cloud-mixed convective region during the dissipation stage and is evaporatively driven. Unsaturated negatively buoyant cloud mixtures dominate the buoyancy and mass fluxes in the upper portion of all clouds while saturated positively buoyant cloud mixtures dominate the fluxes at lower levels. Small and large clouds have distinct vertical profiles of heating/cooling and drying/moistening, with small clouds cooling and moistening throughout their depth, while larger clouds cool and moisten at upper levels and heat and dry at lower levels. The simulation results are compared to the predictions of conceptual models commonly used in shallow cumulus parameterizations.

Full access
Ming Zhao and Philip H. Austin

Abstract

Episodic mixing and buoyancy-sorting (EMBS) models have been proposed as a physically more realistic alternative to entraining plume models of cumulus convection. Applying these models to shallow nonprecipitating clouds requires assumptions about the rate at which undilute subcloud air is eroded into the environment, an algorithm to calculate the eventual detrainment level of cloud–environment mixtures, and the probability distribution of mixing fraction. A diagnostic approach is used to examine the sensitivity of an EMBS model to these three closure assumptions, given equilibrium convection with known large-scale forcings taken from phase III of the Barbados Oceanographic Meteorological Experiment (BOMEX). The undilute eroding rate (UER) is retrieved and found to decrease exponentially with height above cloud base, suggesting a strong modulation by the cloud size distribution. The EMBS model is also used to calculate convective transport by individual clouds of varying thickness. No single cloud from this ensemble can balance the large-scale BOMEX forcing; the observed equilibrium requires a population of clouds with a cloud size distribution that is maximum for small clouds and decreases monotonically with cloud size.

The EMBS model depends sensitively on the assumptions governing the detrainment of positively buoyant mixtures. In particular, given the requirement that positively buoyant mixtures detrain at their neutral buoyancy level, there is no positive definite undilute eroding rate that is consistent with the BOMEX forcing. The model is less sensitive to the assumed distribution of cloud–environment mixtures, given a multiple mixing treatment of positively buoyant parcels and detrainment at the unsaturated neutral buoyancy level.

Full access
Jordan T. Dawe and Philip H. Austin

Abstract

Direct measurements of rates of entrainment into and detrainment from cumulus cloud cores obtained from LES model cloud fields produce values twice as large as those produced from tracer budget calculations. This difference can be explained by two effects: the presence of a shell of air around the cloud cores that is moister than the mean environment and air at the edge of the cloud core that is drier than the mean core, and the tendency for the mean tracer values of the entrained fluid to be greater than the mean tracer values of the cloud shell. Preferential entrainment of shell air that is moving upward faster than the mean shell creates strong vertical momentum fluxes into the cumulus cloud core, thereby making the assumption that cumulus cloud cores entrain fluid with zero vertical momentum incorrect. Variability in the properties of the moist cloud shell has strong impacts on entrainment values inferred from tracer budget calculations. These results indicate that the dynamics of the cloud shell should be included in parameterization of cumulus clouds used in general circulation models.

Full access
Christopher A. Jeffery and Philip H. Austin

Abstract

Comparative studies of global climate models have long shown a marked sensitivity to the parameterization of cloud properties. Early attempts to quantify this sensitivity were hampered by diagnostic schemes that were inherently biased toward the contemporary climate. Recently, prognostic cloud schemes based on an assumed statistical distribution of subgrid variability replaced the older diagnostic schemes in some models. Although the relationship between unresolved variability and mean cloud amount is known in principle, a corresponding relationship between ice-free low cloud thermodynamic and optical properties is lacking. The authors present a simple, analytically tractable statistical optical depth parameterization for boundary layer clouds that links mean reflectivity and emissivity to the underlying distribution of unresolved fluctuations in model thermodynamic variables. To characterize possible impacts of this parameterization on the radiative budget of a large-scale model, they apply it to a zonally averaged climatology, illustrating the importance of a coupled treatment of subgrid-scale condensation and optical variability. They derive analytic expressions for two response functions that characterize two potential low cloud feedback scenarios in a warming climate.

Full access
Jordan T. Dawe and Philip H. Austin

Abstract

Direct calculations of the entrainment and detrainment of air into and out of clouds require knowledge of the relative velocity difference between the air and the cloud surface. However, a discrete numerical model grid forces the distance moved by a cloud surface over a time step to be either zero or the width of a model grid cell. Here a method for the subgrid interpolation of a cloud surface on a discrete numerical model grid is presented. This method is used to calculate entrainment and detrainment rates for a large-eddy simulation (LES) model, which are compared with rates calculated via the direct flux method of Romps. The comparison shows good agreement between the two methods as long as the model clouds are well resolved by the model grid spacing. This limitation of this technique is offset by the ability to resolve fluxes on much finer temporal and spatial scales, making it suitable for calculating entrainment and detrainment profiles for individual clouds.

Full access
Robert Pincus, Malgorzata Szczodrak, Jiujing Gu, and Philip Austin

Abstract

The uncertainty in optical depths retrieved from satellite measurements of visible wavelength radiance at the top of the atmosphere is quantified. Techniques are briefly reviewed for the estimation of optical depth from measurements of radiance, and it is noted that these estimates are always more uncertain at greater optical depths and larger solar zenith angles. The lack of radiometric calibration for visible wavelength imagers on operational satellites dominates the uncertainty retrievals of optical depth. This is true for both single-pixel retrievals and for statistics calculated from a population of individual retrievals. For individual estimates or small samples, sensor discretization (especially for the VAS instrument) can also be significant, but the sensitivity of the retrieval to the specification of the model atmosphere is less important. The relative uncertainty in calibration affects the accuracy with which optical depth distributions measured by different sensors may be quantitatively compared, while the absolute calibration uncertainty, acting through the nonlinear mapping of radiance to optical depth, limits the degree to which distributions measured by the same sensor may be distinguished.

Full access
Christopher S. Bretherton, Philip Austin, and Steven T. Siems

Abstract

The Analysis of the Atlantic Stratocumulus Transition Experiment (ASTEX) Lagrangians started in Part I is continued, presenting measurements of sea surface temperature, surface latent and sensible heat fluxes from bulk aerodynamic formulas, cloud fraction, and drizzle rate for the two Lagrangians, mainly using data from horizontal legs flown by the Electra and C130. Substantial drizzle, averaging 1 mm day−1 at the surface, was measured during the first Lagrangian. The surface fluxes increased rapidly as the air mass advected over rapidly increasing SST. Cloud fraction remained high throughout. During the second Lagrangian, drizzle formed in the stratocumulus layer but mainly evaporated in the deep, dry cumulus layer and the subcloud layer before reaching the surface. Stratocumulus cloud cover was thickest when moist air lay above the inversion and then it dissipated to leave only cumuli once dry air advected over the inversion.

Three methods are compared for determining entrainment rate (European Centre for Medium-Range Weather Forecasts analyses of mean vertical motion, calculation of a water budget, and the ozone flux–jump method). While all three methods have significant uncertainties, their predictions are all consistent with an entrainment rate of 0.7 ± 0.3 cm s−1 for the first Lagrangian and 0.6 ± 0.3 cm s−1 for the second Lagrangian. Corresponding estimates of the time-dependent horizontal divergence are also presented.

Estimates of the cumulus mass flux, internal mixing time, and entrainment dilution time for the boundary layers observed during the two Lagrangians are also presented.

Full access
Philip Austin, Yinong Wang, Vincent Kujala, and Robert Pincus

Abstract

The spatial and temporal variability of precipitating stratocumulus layers is examined using aircraft observations, satellite retrievals of cloud optical depth, and one-dimensional models that include coalescence and a simple representation of layer turbulence. The aircraft observations show large horizontal variations in cloud thickness and precipitation, with local rain rates 4–5 times larger than the replacement moisture flux, and evidence for precipitation scavenging of small cloud droplets. The satellite observations show that, despite this local water loss, the distribution of cloud optical thickness remains nearly constant over the course of a day, indicating that on larger scales precipitation removal and cloud-top entrainment are in approximate balance with the vapor flux. The authors apply analytic and numerical models of steady-state precipitation to the observed microphysical conditions, and find that the models can match the drop size distributions observed during both heavy and light stratocumulus rainfall, but are especially sensitive to the processes governing the growth rate of the smallest drizzle drops.

Full access
Bjorn Stevens, Gabor Vali, Kimberly Comstock, Robert Wood, Margreet C. van Zanten, Philip H. Austin, Christopher S. Bretherton, and Donald H. Lenschow

Data from recent field studies in the northeast and southeast Pacific are used to investigate pockets of open cells (POCs) that are embedded in otherwise uniform stratocumulus. The cellular structure within a POC resembles broader regions of open cellular convection typically found further offshore. In both regions, cells are composed of precipitating cell walls and cell interiors with depleted cloud water and even clearing. POCs are long lived and embedded in broader regions of stratocumulus where average droplet sizes are relatively large. In contrast, stratiform, or unbroken, cloud formations tend to be accompanied by less, or no, drizzle, suggesting that precipitation is necessary for the sustenance of the open cellular structure. Because, by definition, open cells are associated with a reduction in cloud cover these observations provide direct evidence of a connection between cloudiness and precipitation—a linchpin of hypotheses that posit a connection between changes in the atmospheric aerosol and climate.

Full access