Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Philip T. Bergmaier x
  • Refine by Access: All Content x
Clear All Modify Search
Philip T. Bergmaier and Bart Geerts

Abstract

Modeling and observational studies stemming from the 2013–14 Ontario Winter Lake-Effect Systems (OWLeS) field campaign have yielded much insight into the structure and development of long-lake-axis-parallel (LLAP) lake-effect systems over Lake Ontario. This study uses airborne single- and dual-Doppler radar data obtained during two University of Wyoming King Air flights, as well as a high-resolution numerical model simulation, to examine and contrast two distinctly different LLAP band structures observed within a highly persistent lake-effect system on 7–9 January 2014. On 7 January, a very cold air mass accompanied by strong westerly winds and weak capping aloft resulted in a deep, intense LLAP band that produced heavy snowfall well inland. In contrast, weaker winds, weaker surface heat fluxes, and stronger capping aloft resulted in a weaker LLAP band on 9 January. This band was blocked along the downwind shore and produced only light snowfall closer to the shoreline. Although the two structures examined here represent opposite ends of a spectrum of LLAP bands, both cases reveal a well-organized mesoscale secondary circulation composed of two counterrotating horizontal vortices positioned on either side of a narrow updraft within the band. In both cases, this circulation traces back to a shallow, baroclinic land-breeze front originating along a bulge in the lake’s southern shoreline. As the band extends downstream and the low-level baroclinity weakens, buoyancy increases within the band—driven in part by cloud latent heating—leading to band intensification and a deeper, stronger, and more symmetric secondary circulation over the lake.

Free access
Philip T. Bergmaier and Bart Geerts

Abstract

The vast majority of lake-effect snow research throughout the years has focused on the North American Great Lakes since they are often associated with strong lake-effect events that produce heavy downstream snowfall. This study investigates a lake-effect snow event that instead occurred over two smaller lakes, the New York Finger Lakes, which are just O(5) km wide and O(50) km long. A pair of well-defined snowbands that formed over Seneca and Cayuga Lakes, the two largest of the Finger Lakes, were sampled from above by a vertically pointing Doppler radar and lidar on board the University of Wyoming King Air (UWKA). With typical widths matching the widths of the lakes, and depths of less than 1000 m, the long-lake-axis-parallel bands were actually quite intense for their size. For example, updrafts of 2–3 m s−1 or greater within the band cores were common, and reflectivity occasionally exceeded 5 dBZ. Airborne dual-Doppler data show that both bands were sometimes accompanied by a well-defined thermally driven secondary circulation. Lidar data reveal that the Cayuga Lake band contained significantly more liquid water than the band over Seneca Lake, which was composed mainly of ice. Dissipating lake-effect ice clouds, carried downstream from Lake Ontario toward Seneca Lake, likely seeded the emerging convection over Seneca Lake, resulting in an accelerated depletion of liquid in the Seneca Lake band via more efficient snow growth.

Full access
Philip T. Bergmaier and Bart Geerts

Abstract

Commonly observed over the broadly sloped terrain of the southern Great Plains (SGP), drylines are frequent loci of warm season deep convection and have been the focus of numerous observational, theoretical, and climatological studies over last half century. In this study, a 3-yr (2010–12) analysis of the characteristics and synoptic environment of drylines occurring elsewhere, over the high terrain in southeastern Wyoming just east of the Rocky Mountains, is presented. Observed on ~11% of the days between May and August of the years examined, southeastern Wyoming drylines were often associated with large moisture gradients [~5–10 g kg−1 (100 km)−1], large horizontal virtual potential temperature differences (~2–5 K), and convergent zonal wind flow at the surface. The synoptic conditions leading to their formation and their relationship to thunderstorm activity are also explored in an effort to aid local forecasters in anticipating the development and convective impact of drylines across the region. Similarities exist between these drylines and those found over the SGP, especially with regard to their strength and close relationship to deep convection. However, the frequency at which they occur, some characteristics of their diurnal motion, and the synoptic conditions driving their formation differ noticeably.

Full access
Patrick C. Campbell, Bart Geerts, and Philip T. Bergmaier

Abstract

A first observational and modeling study of a dryline and associated initiation of deep convection over the high plains of southeastern Wyoming is presented. Radar and station measurements show that the dryline is a well-defined convergent humidity boundary with a modest density (i.e., buoyancy) gradient. Its development, intensity, and movement are regulated by the terrain, diurnal land surface and boundary layer processes, and synoptic-scale evolution. At least one of the thunderstorms that emerged from the dryline became severe. Weather Research and Forecasting Model (WRF) simulations accurately reproduce measured aspects of this dryline, as well as the timing and location of convection initiation. The WRF output is used further to characterize the dryline vertical and horizontal structures and to examine convection initiation processes. A dryline bulge over a local terrain ridge appears to be an essential ingredient in convection initiation on this day: just north of this bulge the surface convergence and buoyancy gradient are strongest, and deep convection is triggered. In this region especially, the WRF simulation produces horizontal convective rolls intersecting with the dryline, as well as small cyclonic vortices along the dryline. In fact, the primary storm cell initiates just downwind of one such vortex. Part II of this study describes the finescale vertical structure of this dryline using airborne Raman lidar data.

Full access
Anders A. Jensen, Philip T. Bergmaier, Bart Geerts, Hugh Morrison, and Leah S. Campbell

Abstract

The OWLeS IOP2b lake-effect case is simulated using the Weather Research and Forecasting (WRF) Model with a horizontal grid spacing of 148 m (WRF-LES mode). The dynamics and microphysics of the simulated high-resolution snowband and a coarser-resolution band from the parent nest (1.33-km horizontal grid spacing) are compared to radar and aircraft observations. The Ice Spheroids Habit Model with Aspect-ratio Evolution (ISHMAEL) microphysics is used, which predicts the evolution of ice particle properties including shape, maximum diameter, density, and fall speed. The microphysical changes within the band that occur when going from 1.33-km to 148-m grid spacing are explored. Improved representation of the dynamics at higher resolution leads to a better representation of the microphysics of the snowband compared to radar and aircraft observations. Stronger updrafts in the high-resolution grid produce higher ice number concentrations and produce ice particles that are more heavily rimed and thus more spherical, smaller (in terms of mean maximum diameter), and faster falling. These changes to the ice particle properties in the high-resolution grid limit the production of aggregates and improve reflectivity compared to observations. Graupel, observed in the band at the surface, is simulated in the strongest convective updrafts, but only at the higher resolution. Ultimately, the duration of heavy precipitation just onshore from the collapse of convection is better predicted in the high-resolution domain compared to surface and radar observations.

Free access
Philip T. Bergmaier, Bart Geerts, Zhien Wang, Bo Liu, and Patrick C. Campbell

Abstract

Part I of this study describes the mesoscale structure of a dryline over southeastern Wyoming. This dryline formed just east of the western rim of the high plains on 22 June 2010 and became more defined as it progressed eastward during the afternoon. Part I also describes the numerically simulated structure and evolution of this dryline and the observed initiation of deep convection in the vicinity of the dryline.

An instrumented aircraft, the University of Wyoming King Air, repeatedly flew across this dryline, mostly low enough to penetrate the moist-air wedge east of the dryline. Flight-level in situ data along these low-level penetrations indicate relatively high values of convective available potential energy (CAPE; >1500 J kg−1), yet low convective inhibition, within a few kilometers of the dryline. Water vapor transects obtained from a compact nadir-pointing Raman lidar aboard the aircraft reveal an extremely sharp humidity gradient below flight level along the dryline, coinciding with the fineline seen in operational weather radar base reflectivity imagery. They also reveal several plumes of higher specific humidity within the dry elevated mixed layer above the moist-air wedge, possibly precursors of cumulus clouds. The vertical structure of the dryline revealed by Raman lidar and the flight-level data correspond well to that in the high-resolution numerical simulation.

Full access
Philip T. Bergmaier, Bart Geerts, Leah S. Campbell, and W. James Steenburgh

Abstract

Intense lake-effect snowfall results from a long-lake-axis-parallel (LLAP) precipitation band that often forms when the flow is parallel to the long axis of an elongated body of water, such as Lake Ontario. The intensity and persistence of the localized precipitation along the downwind shore and farther inland suggests the presence of a secondary circulation that helps organize such a band, and maintain it for some time as the circulation is advected inland. Unique airborne vertical-plane dual-Doppler radar data are used here to document this secondary circulation in a deep, well-organized LLAP band observed during intensive observing period (IOP) 2b of the Ontario Winter Lake-effect Systems (OWLeS) field campaign. The circulation, centered on a convective updraft, intensified toward the downwind shore and only gradually weakened inland. The question arises as to what sustains such a circulation in the vertical plane across the LLAP band. WRF Model simulations indicate that the primary LLAP band and other convergence zones observed over Lake Ontario during this IOP were initiated by relatively shallow airmass boundaries, resulting from a thermal contrast (i.e., land-breeze front) and differential surface roughness across the southern shoreline. Airborne radar data near the downwind shore of the lake indicate that the secondary circulation was much deeper than these shallow boundaries and was sustained primarily by rather symmetric solenoidal forcing, enhanced by latent heat release within the updraft region.

Full access
Dan Welsh, Bart Geerts, Xiaoqin Jing, Philip T. Bergmaier, Justin R. Minder, W. James Steenburgh, and Leah S. Campbell

Abstract

The distribution of radar-estimated precipitation from lake-effect snowbands over and downwind of Lake Ontario shows more snowfall in downwind areas than over the lake itself. Here, two nonexclusive processes contributing to this are examined: the collapse of convection that lofts hydrometeors over the lake and allows them to settle downwind; and stratiform ascent over land, due to the development of a stable boundary layer, frictional convergence, and terrain, leading to widespread precipitation there. The main data sources for this study are vertical profiles of radar reflectivity and hydrometeor vertical velocity in a well-defined, deep long-lake-axis-parallel band, observed on 11 December 2013 during the Ontario Winter Lake-effect Systems (OWLeS) project. The profiles are derived from an airborne W-band Doppler radar, as well as an array of four K-band radars, an X-band profiling radar, a scanning X-band radar, and a scanning S-band radar.

The presence of convection offshore is evident from deep, strong (up to 10 m s−1) updrafts producing bounded weak-echo regions and locally heavily rimed snow particles. The decrease of the standard deviation, skewness, and peak values of Doppler vertical velocity during the downwind shore crossing is consistent with the convection collapse hypothesis. Consistent with the stratiform ascent hypothesis are (i) an increase in mean vertical velocity over land; and (ii) an increasing abundance of large snowflakes at low levels and over land, due to depositional growth and aggregation, evident from flight-level and surface particle size distribution data, and from differences in reflectivity values from S-, X-, K-, and W-band radars at nearly the same time and location.

Full access
Sarah A. Tessendorf, Jeffrey R. French, Katja Friedrich, Bart Geerts, Robert M. Rauber, Roy M. Rasmussen, Lulin Xue, Kyoko Ikeda, Derek R. Blestrud, Melvin L. Kunkel, Shaun Parkinson, Jefferson R. Snider, Joshua Aikins, Spencer Faber, Adam Majewski, Coltin Grasmick, Philip T. Bergmaier, Andrew Janiszeski, Adam Springer, Courtney Weeks, David J. Serke, and Roelof Bruintjes

Abstract

The Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE) project aims to study the impacts of cloud seeding on winter orographic clouds. The field campaign took place in Idaho between 7 January and 17 March 2017 and employed a comprehensive suite of instrumentation, including ground-based radars and airborne sensors, to collect in situ and remotely sensed data in and around clouds containing supercooled liquid water before and after seeding with silver iodide aerosol particles. The seeding material was released primarily by an aircraft. It was hypothesized that the dispersal of the seeding material from aircraft would produce zigzag lines of silver iodide as it dispersed downwind. In several cases, unambiguous zigzag lines of reflectivity were detected by radar, and in situ measurements within these lines have been examined to determine the microphysical response of the cloud to seeding. The measurements from SNOWIE aim to address long-standing questions about the efficacy of cloud seeding, starting with documenting the physical chain of events following seeding. The data will also be used to evaluate and improve computer modeling parameterizations, including a new cloud-seeding parameterization designed to further evaluate and quantify the impacts of cloud seeding.

Open access