Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Philip W. Jones x
  • Refine by Access: All Content x
Clear All Modify Search
Philip W. Jones

Abstract

Coupling atmosphere, ocean, sea ice, and land surface models requires a means for remapping fields between grids in an accurate and conservative manner. A method is described here for computing interpolation weights for first- and second-order conservative remappings. The method is completely general and can be used for any grid on a sphere.

Full access
Philip W. Jones, Kevin Hamilton, and R. John Wilson

Abstract

This paper discusses a simulation obtained with the Geophysical Fluid Dynamics Laboratory “SKYHI” troposphere–stratosphere–mesosphere general circulation model run at very high horizontal resolution (∼60-km grid spacing) and without any parameterization of subgrid-scale gravity wave drag. The results are for a period around the austral winter solstice, and the emphasis is on the simulated Southern Hemisphere (SH) winter circulation. Comparisons are made with results obtained from lower horizontal resolution versions of the same model.

The focus in this paper is on two particularly striking features of the high-resolution simulation: the extratropical surface winds and the winter polar middle atmospheric vortex. In the extratropical SH, the simulated surface westerlies and meridional surface pressure gradients in the high-resolution model are considerably stronger than observed and are stronger than those simulated at lower horizontal resolution. In the middle atmosphere, the high-resolution model produces a simulation of the zonal mean winter polar vortex that is considerably improved over that found with lower resolution models (although it is still significantly affected by the usual cold pole bias). Neither the improvement of the middle atmospheric polar vortex simulation nor the deterioration of the simulation of surface winds with increased model resolution shows a clear convergence, even at the ∼60-km grid spacing employed here.

Full access
R. David Baker, Gerald Schubert, and Philip W. Jones

Abstract

A two-dimensional, nonlinear, fully compressible model of a perfect gas is used to simulate cloud-level penetrative convection in the Venus atmosphere from 40 to 60 km altitude. Three cases with different amounts of solar heating are considered: 60%, 80%, and 100% subsolar heating conditions corresponding to maximum internally heated Rayleigh numbers of 4.0 × 106, 5.4 × 106, and 6.8 × 106, respectively. Cloud-level convection is characterized by cold, narrow downwellings that deeply penetrate (∼5 km) the underlying stable layer. The horizontal spacing of the downwellings is 15–30 km, an order of magnitude smaller than observed cloud-top cells in ultraviolet images. The penetrating head of the downflow is both mechanically forced upward and compressionally heated by the underlying stable layer. The local compressional heating rate induced by penetration is four orders of magnitude larger than the solar heating rate. Although slightly larger in magnitude, the calculated vertical velocities at 54-km altitude are consistent with Vega balloon measurements. The computations show that the Vega balloons drifted in a relatively quiescent part of the convection layer. Vertical velocities are three to five times larger in the lower part of the convection layer than in the upper part of the layer because of the dominance of convection by intense downwellings that acquire their highest speeds as they penetrate the underlying stable region. Mixing length theory underestimates the vertical velocity of convection by a factor of 3 or more because kinetic energy in the convection layer is balanced not only by buoyancy work as assumed by mixing length theory, but also by pressure work and viscous work. A transfer of energy from low-frequency convective modes to higher-frequency “interfacial” penetrative modes occurs in the penetrative region. Internal gravity waves are also generated in the stable layers with horizontal wavelengths of 5–30 km and intrinsic horizontal phase speeds comparable to convective velocities.

Full access
R. David Baker, Gerald Schubert, and Philip W. Jones

Abstract

This paper is the first of a two-part study that investigates internal gravity wave generation by convection in the lower atmosphere of Venus. A two-dimensional, nonlinear, fully compressible model of a perfect gas is employed. The calculations consider the lower atmosphere from 12- to 60-km altitude, thereby including two convection regions: the lower atmosphere convection layer from roughly 18- to 30-km altitude and the cloud-level convection layer from roughly 48- to 55-km altitude. The gravity waves of interest are located in the stable layer between these two convection regions. Part I of this study considers gravity wave generation and propagation in the absence of mean wind shear.

In the absence of mean wind shear, internal gravity waves are primarily generated by cloud-level convection. Horizontal wavelengths (∼10–15 km) are similar to dominant horizontal scales in the cloud-level penetrative region, and intrinsic horizontal phase speeds are comparable to cloud-level downdraft velocities. Without mean wind shear, there is no effective coupling between the lower atmosphere below 34-km altitude and the overlying stable layer. Simulated wave amplitudes and vertical wavelengths agree well with spacecraft observations, suggesting that gravity waves generated by cloud-level convection through the “mechanical oscillator” effect may be responsible for observed variations in the stable layer.

Full access
R. David Baker, Gerald Schubert, and Philip W. Jones

Abstract

This paper is the second of a two-part study that numerically investigates internal gravity wave generation by convection in the lower atmosphere of Venus. Part I of this study considers gravity wave generation and propagation in the absence of mean wind shear. In Part II, the Venus westward superrotation is included, and wave–mean flow interaction is assessed.

Both lower-atmosphere convection and cloud-level convection play active roles in the dynamics of the stable layer from 31- to 47-km altitude when mean wind shear is present. This result contrasts with the simulation without mean wind shear presented in Part I where cloud-level convection was primarily responsible for gravity wave generation in the stable layer. In the presence of mean wind shear, upward entrainment from lower-atmosphere convection and downward penetration from cloud-level convection are comparable in magnitude. Convectively generated internal gravity waves have horizontal wavelengths (∼25–30 km) comparable to horizontal scales in both convection layers. Quasi-stationary gravity waves (with respect to the lower convection layer) occur in the lower part of the stable layer, while both eastward- and westward-propagating waves generated by cloud-level convection exist in the upper part of the stable layer. Simulated wave amplitudes and vertical wavelengths agree well with observations. Eastward-propagating waves generated by cloud-level convection experience critical level absorption in the stable layer and thus decelerate the Venus westward superrotation below the clouds. The deceleration is comparable in magnitude to zonal accelerations above the clouds by thermal tides.

Full access
Katharine M. Willett, Philip D. Jones, Nathan P. Gillett, and Peter W. Thorne

Abstract

Water vapor constitutes the most significant greenhouse gas, is a key driver of many atmospheric processes, and hence, is fundamental to understanding the climate system. It is a major factor in human “heat stress,” whereby increasing humidity reduces the ability to stay cool. Until now no truly global homogenized surface humidity dataset has existed with which to assess recent changes. The Met Office Hadley Centre and Climatic Research Unit Global Surface Humidity dataset (HadCRUH), described herein, provides a homogenized quality controlled near-global 5° by 5° gridded monthly mean anomaly dataset in surface specific and relative humidity from 1973 to 2003. It consists of land and marine data, and is geographically quasi-complete over the region 60°N–40°S.

Between 1973 and 2003 surface specific humidity has increased significantly over the globe, tropics, and Northern Hemisphere. Global trends are 0.11 and 0.07 g kg−1 (10 yr)−1 for land and marine components, respectively. Trends are consistently larger in the tropics and in the Northern Hemisphere during summer, as expected: warmer regions exhibit larger increases in specific humidity for a given temperature change under conditions of constant relative humidity, based on the Clausius–Clapeyron equation. Relative humidity trends are not significant when averaged over the landmass of the globe, tropics, and Northern Hemisphere, although some seasonal changes are significant.

A strong positive bias is apparent in marine humidity data prior to 1982, likely owing to a known change in reporting practice for dewpoint temperature at this time. Consequently, trends in both specific and relative humidity are likely underestimated over the oceans.

Full access
Philip W. Mote, Myles R. Allen, Richard G. Jones, Sihan Li, Roberto Mera, David E. Rupp, Ahmed Salahuddin, and Dean Vickers

Abstract

Computing resources donated by volunteers have generated the first superensemble of regional climate model results, in which the Hadley Centre Regional Model, version 3P (HadRM3P), and Hadley Centre Atmosphere Model, version 3P (HadAM3P), were implemented for the western United States at 25-km resolution. Over 136,000 valid and complete 1-yr runs have been generated to date: about 126,000 for 1960–2009 using observed sea surface temperatures (SSTs) and 10,000 for 2030–49 using projected SSTs from a global model simulation. Ensemble members differ in initial conditions, model physics, and (potentially, for future runs) SSTs. This unprecedented confluence of high spatial resolution and large ensemble size allows high signal-to-noise ratio and more robust estimates of uncertainty. This paper describes the experiment, compares model output with observations, shows select results for climate change simulations, and gives examples of the strength of the large ensemble size.

Full access
Thomas R. Karl, Philip D. Jones, Richard W. Knight, George Kukla, Neil Plummer, Vyacheslav Razuvayev, Kevin P. Gallo, Janette Lindseay, Robert J. Charlson, and Thomas C. Peterson

Monthly mean maximum and minimum temperatures for over 50% (10%) of the Northern (Southern) Hemisphere landmass, accounting for 37% of the global landmass, indicate that the rise of the minimum temperature has occurred at a rate three times that of the maximum temperature during the period 1951–90 (0.84°C versus 0.28°C). The decrease of the diurnal temperature range is approximately equal to the increase of mean temperature. The asymmetry is detectable in all seasons and in most of the regions studied.

The decrease in the daily temperature range is partially related to increases in cloud cover. Furthermore, a large number of atmospheric and surface boundary conditions are shown to differentially affect the maximum and minimum temperature. Linkages of the observed changes in the diurnal temperature range to large-scale climate forcings, such as anthropogenic increases in sulfate aerosols, greenhouse gases, or biomass burning (smoke), remain tentative. Nonetheless, the observed decrease of the diurnal temperature range is clearly important, both scientifically and practically.

Full access
M. Ades, R. Adler, Rob Allan, R. P. Allan, J. Anderson, Anthony Argüez, C. Arosio, J. A. Augustine, C. Azorin-Molina, J. Barichivich, J. Barnes, H. E. Beck, Andreas Becker, Nicolas Bellouin, Angela Benedetti, David I. Berry, Stephen Blenkinsop, Olivier. Bock, Michael G. Bosilovich, Olivier. Boucher, S. A. Buehler, Laura. Carrea, Hanne H. Christiansen, F. Chouza, John R. Christy, E.-S. Chung, Melanie Coldewey-Egbers, Gil P. Compo, Owen R. Cooper, Curt Covey, A. Crotwell, Sean M. Davis, Elvira de Eyto, Richard A. M de Jeu, B.V. VanderSat, Curtis L. DeGasperi, Doug Degenstein, Larry Di Girolamo, Martin T. Dokulil, Markus G. Donat, Wouter A. Dorigo, Imke Durre, Geoff S. Dutton, G. Duveiller, James W. Elkins, Vitali E. Fioletov, Johannes Flemming, Michael J. Foster, Richard A. Frey, Stacey M. Frith, Lucien Froidevaux, J. Garforth, S. K. Gupta, Leopold Haimberger, Brad D. Hall, Ian Harris, Andrew K Heidinger, D. L. Hemming, Shu-peng (Ben) Ho, Daan Hubert, Dale F. Hurst, I. Hüser, Antje Inness, K. Isaksen, Viju John, Philip D. Jones, J. W. Kaiser, S. Kelly, S. Khaykin, R. Kidd, Hyungiun Kim, Z. Kipling, B. M. Kraemer, D. P. Kratz, R. S. La Fuente, Xin Lan, Kathleen O. Lantz, T. Leblanc, Bailing Li, Norman G Loeb, Craig S. Long, Diego Loyola, Wlodzimierz Marszelewski, B. Martens, Linda May, Michael Mayer, M. F. McCabe, Tim R. McVicar, Carl A. Mears, W. Paul Menzel, Christopher J. Merchant, Ben R. Miller, Diego G. Miralles, Stephen A. Montzka, Colin Morice, Jens Mühle, R. Myneni, Julien P. Nicolas, Jeannette Noetzli, Tim J. Osborn, T. Park, A. Pasik, Andrew M. Paterson, Mauri S. Pelto, S. Perkins-Kirkpatrick, G. Pétron, C. Phillips, Bernard Pinty, S. Po-Chedley, L. Polvani, W. Preimesberger, M. Pulkkanen, W. J. Randel, Samuel Rémy, L. Ricciardulli, A. D. Richardson, L. Rieger, David A. Robinson, Matthew Rodell, Karen H. Rosenlof, Chris Roth, A. Rozanov, James A. Rusak, O. Rusanovskaya, T. Rutishäuser, Ahira Sánchez-Lugo, P. Sawaengphokhai, T. Scanlon, Verena Schenzinger, S. Geoffey Schladow, R. W Schlegel, Eawag Schmid, Martin, H. B. Selkirk, S. Sharma, Lei Shi, S. V. Shimaraeva, E. A. Silow, Adrian J. Simmons, C. A. Smith, Sharon L Smith, B. J. Soden, Viktoria Sofieva, T. H. Sparks, Paul W. Stackhouse Jr., Wolfgang Steinbrecht, Dimitri A. Streletskiy, G. Taha, Hagen Telg, S. J. Thackeray, M. A. Timofeyev, Kleareti Tourpali, Mari R. Tye, Ronald J. van der A, Robin, VanderSat B.V. van der Schalie, Gerard van der SchrierW. Paul, Guido R. van der Werf, Piet Verburg, Jean-Paul Vernier, Holger Vömel, Russell S. Vose, Ray Wang, Shohei G. Watanabe, Mark Weber, Gesa A. Weyhenmeyer, David Wiese, Anne C. Wilber, Jeanette D. Wild, Takmeng Wong, R. Iestyn Woolway, Xungang Yin, Lin Zhao, Guanguo Zhao, Xinjia Zhou, Jerry R. Ziemke, and Markus Ziese
Free access