Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Philippe Lattes x
  • All content x
Clear All Modify Search
Tran Vu La, Christophe Messager, Marc Honnorat, Rémi Sahl, Ali Khenchaf, Claire Channelliere, and Philippe Lattes


Convective systems (CS) through their downdrafts hitting the sea surface may produce wind patterns (or cold pools) with wind intensity exceeding 10–25 m s−1. The latter for a long time have been significant for weather forecast and meteorological studies, especially in the tropical regions like the Gulf of Guinea since it is hard to detect the CS-associated wind patterns. Based on Sentinel-1 images [C-band Synthetic Aperture Radar (SAR)] with high spatial resolution and large swath, the current study proposed the detection of surface wind patterns through wind speed estimation by C-band model 5.N (CMOD5.N; for vertically polarized images) and two models proposed by Sapp and Komarov (for horizontally polarized images). Relative to the X-band SAR, the effects of precipitation on C-band radar backscattering are negligible, and thereby it has little impact on wind speed estimation from Sentinel-1 images. The detected surface wind patterns include a squall line and a bow echo at the mesoscale (>100 km) and many submesoscale (<100 km) convection cells. They are accompanied by various degrees of precipitation (from light to heavy rain). This study also used Meteosat infrared images for monitoring and detection of deep convective clouds (with low brightness temperature) corresponding to surface wind patterns. The agreement in location and sometimes in shape between them strengthened the assumption that the CS downdrafts may induce the sea surface patterns with high wind intensity (10–25 m s−1). In particular, because of the Sentinel-1 high spatial resolution, the pattern spots with high winds (20–25 m s−1) are detected on the illustrated images, which was not reported in the literature. They are located close to the coldest convective clouds (about 200-K brightness temperature).

Restricted access
Claire Henocq, Jacqueline Boutin, Gilles Reverdin, François Petitcolin, Sabine Arnault, and Philippe Lattes


Two satellite missions are planned to be launched in the next two years; the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and the National Aeronautics and Space Administration (NASA) Aquarius missions aim at detecting sea surface salinity (SSS) using L-band radiometry (1.4 GHz). At that frequency, the skin depth is on the order of 1 cm. However, the calibration and validation of L-band-retrieved SSS will be done with in situ measurements, mainly taken at 5-m depth. To anticipate and understand vertical salinity differences in the first 10 m of the ocean surface layer, in situ vertical profiles are analyzed. The influence of rain events is studied. Tropical Atmosphere Ocean (TAO) moorings, the most comprehensive dataset, provide measurements of salinity taken simultaneously at 1, 5, and 10 m and measurements of rain rate. Then, observations of vertical salinity differences, sorted according to their vertical levels, are expanded through the tropical band (30°S–30°N) using thermosalinographs (TSG), floats, expendable conductivity–temperature–depth (XCTD), and CTD data. Vertical salinity differences higher than 0.1 pss are observed in the Pacific, Atlantic, and Indian Oceans, mainly between 0° and 15°N, which coincides with the average position of the intertropical convergence zone (ITCZ). Some differences exceed 0.5 pss locally and persist for more than 10 days. A statistical approach is developed for the detection of large vertical salinity differences, knowing the history of rain events and the simultaneous wind intensity, as estimated from satellite measurements.

Full access