Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Philippe Lucas-Picher x
  • Refine by Access: All Content x
Clear All Modify Search
Philippe Lucas-Picher, Philippe Riboust, Samuel Somot, and René Laprise

Abstract

Climate simulations made with two regional climate models (RCMs), the French Aire Limitée Adaptation Dynamique Développement International (ALADIN) and the Canadian Regional Climate Model, version 5 (CRCM5), operating on 10-km meshes for the period 1989–2011, and the Hydro-Québec hydrological model (HSAMI), are used to reconstruct the spring 2011 Richelieu River flood in the southern region of the province of Québec, Canada. The analysis shows that the simulated fields of 2-m air temperature, precipitation, and snow water equivalent by the RCMs closely match the observations with similar multiyear means and a high correlation of the monthly anomalies. The climatic conditions responsible for the 2011 flood are generally well simulated by the RCMs. The use of multidecadal RCM simulations facilitates the identification of anomalies that contributed to the flood. The flood was linked to a combination of factors: the 2010/11 winter was cold and snowy, the snowmelt in spring was fast, and there was a record amount of precipitation in April and May. Driven by outputs from the RCMs, HSAMI was able to reproduce the mean hydrograph of the Richelieu River, but it underestimated the peak of the 2011 flood. HSAMI adequately computes the water transport from the mountains to the river mouth and the storage effect of Lake Champlain, which dampens the flood over a long period. Overall, the results suggest that RCM simulations can be useful for reconstructing high-resolution climate information and providing new variables that can help better understand the causes of extreme climatic events.

Full access
Philippe Lucas-Picher, Daniel Caya, Sébastien Biner, and René Laprise

Abstract

The present work introduces a new and useful tool to quantify the lateral boundary forcing of a regional climate model (RCM). This tool, an aging tracer, computes the time the air parcels spend inside the limited-area domain of an RCM. The aging tracers are initialized to zero when the air parcels enter the domain and grow older during their migrations through the domain with each time step in the integration of the model. This technique was employed in a 10-member ensemble of 10-yr (1980–89) simulations with the Canadian RCM on a large domain covering North America. The residency time is treated and archived as the other simulated meteorological variables, therefore allowing computation of its climate diagnostics. These diagnostics show that the domain-averaged residency time is shorter in winter than in summer as a result of the faster winter atmospheric circulation. The residency time decreases with increasing height above the surface because of the faster atmospheric circulation at high levels dominated by the jet stream. Within the domain, the residency time increases from west to east according to the transportation of the aging tracer with the westerly general atmospheric circulation. A linear relation is found between the spatial distribution of the internal variability—computed with the variance between the ensemble members—and residency time. This relation indicates that the residency time can be used as a quantitative indicator to estimate the level of control exerted by the lateral boundary conditions on the RCM simulations.

Full access
Philippe Lucas-Picher, Fredrik Boberg, Jens H. Christensen, and Peter Berg

Abstract

To retain the sequence of events of a regional climate model (RCM) simulation driven by a reanalysis, a method that has not been widely adopted uses an RCM with frequent reinitializations toward its driving field. In this regard, this study highlights the benefits of an RCM simulation with frequent (daily) reinitializations compared to a standard continuous RCM simulation. Both simulations are carried out with the RCM HIRHAM5, driven with the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) data, over the 12-km-resolution European Coordinated Regional Climate Downscaling Experiment (CORDEX) domain covering the period 1989–2009. The analysis of daily precipitation shows improvements in the sequence of events and the maintenance of the added value from the standard continuous RCM simulation. The validation of the two RCM simulations with observations reveals that the simulation with reinitializations indeed improves the temporal correlation. Furthermore, the RCM simulation with reinitializations has lower systematic errors compared to the continuous simulation, which has a tendency to be too wet. A comparison of the distribution of wet day precipitation intensities shows similar added value in the continuous and reinitialized simulations with higher variability and extremes compared to the driving field ERA-Interim. Overall, the results suggest that the finescale climate dataset of the RCM simulation with reinitializations better suits the needs of impact studies by providing a sequence of events matching closely the observations, while limiting systematic errors and generating reliable added value. Downsides of the method with reinitializations are increased computational costs and the introduction of temporal discontinuities that are similar to those of a reanalysis.

Restricted access
Gilles R. C. Essou, François Brissette, and Philippe Lucas-Picher

Abstract

Precipitation forcing is critical for hydrological modeling as it has a strong impact on the accuracy of simulated river flows. In general, precipitation data used in hydrological modeling are provided by weather stations. However, in regions with sparse weather station coverage, the spatial interpolation of the individual weather stations provides a rough approximation of the real precipitation fields. In such regions, precipitation from interpolated weather stations is generally considered unreliable for hydrological modeling. Precipitation estimates from reanalyses could represent an interesting alternative in regions where the weather station density is low. This article compares the performances of river flows simulated by a watershed model using precipitation and temperature estimates from reanalyses and gridded observations. The comparison was carried out based on the density of surface weather stations for 316 Canadian watersheds located in three climatic regions. Three state-of-the-art atmospheric reanalyses—ERA-Interim, CFSR, and MERRA—and one gridded observations database over Canada—Natural Resources Canada (NRCan)—were used. Results showed that the Nash–Sutcliffe values of simulated river flows using precipitation and temperature data from CFSR and NRCan were generally equivalent regardless of the weather station density. ERA-Interim and MERRA performed significantly better than NRCan for watersheds with weather station densities of less than 1 station per 1000 km2 in the mountainous region. Overall, these results indicate that for hydrological modeling in regions with high spatial variability of precipitation such as mountainous regions, reanalyses perform better than gridded observations when the weather station density is low.

Full access
Gilles R. C. Essou, Florent Sabarly, Philippe Lucas-Picher, François Brissette, and Annie Poulin

Abstract

This paper investigates the potential of reanalyses as proxies of observed surface precipitation and temperature to force hydrological models. Three global atmospheric reanalyses (ERA-Interim, CFSR, and MERRA), one regional reanalysis (NARR), and one global meteorological forcing dataset obtained by bias-correcting ERA-Interim [Water and Global Change (WATCH) Forcing Data ERA-Interim (WFDEI)] were compared to one gridded observation database over the contiguous United States. Results showed that all temperature datasets were similar to the gridded observation over most of the United States. On the other hand, precipitation from all three global reanalyses was biased, especially in summer and winter in the southeastern United States. The regional reanalysis precipitation was closer to observations since it indirectly assimilates surface precipitation. The WFDEI dataset was generally less biased than the reanalysis datasets. All datasets were then used to force a global conceptual hydrological model on 370 watersheds of the Model Parameter Estimation Experiment (MOPEX) database. River flows were computed for each watershed, and results showed that the flows simulated using NARR and gridded observations forcings were very similar to the observed flows. The simulated flows forced by the global reanalysis datasets were also similar to the observations, except in the humid continental and subtropical climatic regions, where precipitation seasonality biases degraded river flow simulations. The WFDEI dataset led to better river flows than reanalysis in the humid continental and subtropical climatic regions but was no better than reanalysis—and sometimes worse—in other climatic zones. Overall, the results indicate that global reanalyses have good potential to be used as proxies to observations to force hydrological models, especially in regions with few weather stations.

Full access
Jie Chen, Blaise Gauvin St-Denis, François P. Brissette, and Philippe Lucas-Picher

Abstract

Postprocessing of climate model outputs is usually performed to remove biases prior to performing climate change impact studies. The evaluation of the performance of bias correction methods is routinely done by comparing postprocessed outputs to observed data. However, such an approach does not take into account the inherent uncertainty linked to natural climate variability and may end up recommending unnecessary complex postprocessing methods. This study evaluates the performance of bias correction methods using natural variability as a baseline. This baseline implies that any bias between model simulations and observations is only significant if it is larger than the natural climate variability. Four bias correction methods are evaluated with respect to reproducing a set of climatic and hydrological statistics. When using natural variability as a baseline, complex bias correction methods still outperform the simplest ones for precipitation and temperature time series, although the differences are much smaller than in all previous studies. However, after driving a hydrological model using the bias-corrected precipitation and temperature, all bias correction methods perform similarly with respect to reproducing 46 hydrological metrics over two watersheds in different climatic zones. The sophisticated distribution mapping correction methods show little advantage over the simplest scaling method. The main conclusion is that simple bias correction methods appear to be just as good as other more complex methods for hydrological climate change impact studies. While sophisticated methods may appear more theoretically sound, this additional complexity appears to be unjustified in hydrological impact studies when taking into account the uncertainty linked to natural climate variability.

Full access
Florent Sabarly, Gilles Essou, Philippe Lucas-Picher, Annie Poulin, and François Brissette

Abstract

Reanalyses have the potential to provide meteorological information in areas where few or no traditional observation records are available. The terrestrial branch of the water cycle of CFSR, MERRA, ERA-Interim, and NARR is examined over Quebec, Canada, for the 1979–2008 time period. Precipitation, evaporation, runoff, and water balance are studied using observed precipitation and streamflows, according to three spatial scales: 1) the entire province of Quebec, 2) five regions derived from a climate classification, and 3) 11 river basins. The results reveal that MERRA provides a relatively closed water balance, while a significant residual was found for the other three reanalyses. MERRA and ERA-Interim seem to provide the most reliable precipitation over the province. On the other hand, precipitation from CFSR and NARR do not appear to be particularly reliable, especially over southern Quebec, as they almost systematically showed the highest and the lowest values, respectively. Moreover, the partitioning of precipitation into evaporation and runoff from MERRA and NARR does not agree with what was expected, particularly over southern, central, and eastern Quebec. Despite the weaknesses identified, the ability of reanalyses to reproduce the terrestrial water cycle of the recent past (i.e., 1979–2008) remains globally satisfactory. Nonetheless, their potential to provide reliable information must be validated by comparing reanalyses directly with weather stations, especially in remote areas.

Full access
Philippe Lucas-Picher, Jens H. Christensen, Fahad Saeed, Pankaj Kumar, Shakeel Asharaf, Bodo Ahrens, Andrew J. Wiltshire, Daniela Jacob, and Stefan Hagemann

Abstract

The ability of four regional climate models (RCMs) to represent the Indian monsoon was verified in a consistent framework for the period 1981–2000 using the 45-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) as lateral boundary forcing data. During the monsoon period, the RCMs are able to capture the spatial distribution of precipitation with a maximum over the central and west coast of India, but with important biases at the regional scale on the east coast of India in Bangladesh and Myanmar. Most models are too warm in the north of India compared to the observations. This has an impact on the simulated mean sea level pressure from the RCMs, being in general too low compared to ERA-40. Those biases perturb the land–sea temperature and pressure contrasts that drive the monsoon dynamics and, as a consequence, lead to an overestimation of wind speed, especially over the sea. The timing of the monsoon onset of the RCMs is in good agreement with the one obtained from observationally based gridded datasets, while the monsoon withdrawal is less well simulated. A Hovmöller diagram representation of the mean annual cycle of precipitation reveals that the meridional motion of the precipitation simulated by the RCMs is comparable to the one observed, but the precipitation amounts and the regional distribution differ substantially between the four RCMs. In summary, the spread at the regional scale between the RCMs indicates that important feedbacks and processes are poorly, or not, taken into account in the state-of-the-art regional climate models.

Full access