Search Results

You are looking at 1 - 10 of 23 items for

  • Author or Editor: Pierre Gentine x
  • All content x
Clear All Modify Search
Pierre Gentine, Dara Entekhabi, and Jan Polcher

Abstract

The components of the land surface energy balance respond to periodic incoming radiation forcing with different amplitude and phase characteristics. Evaporative fraction (EF), the ratio of latent heat to available energy at the land surface, supposedly isolates surface control (soil moisture and vegetation) from radiation and turbulent factors. EF is thus supposed to be a diagnostic of the surface energy balance that is constant or self-preserved during daytime. If this holds, EF can be an effective way to estimate surface characteristics from temperature and energy flux measurements. Evidence for EF diurnal self-preservation is based on limited-duration field measurements. The daytime EF self-preservation using both long-term measurements and a model of the soil–vegetation–atmosphere continuum is reexamined here. It is demonstrated that EF is rarely constant and that its temporal power spectrum is wide; thus emphasizing the role of all diurnal frequencies associated with reduced predictability in its daylight response. Oppositely, surface turbulent heat fluxes are characterized by a strong response to the principal daily frequencies (daily and semi-daily) of the solar radiative forcing. It is shown that the phase lag and bias between the turbulent flux components of the surface energy balance are key to the shape of the daytime EF. Therefore, an understanding of the physical factors that affect the phase lag and bias in the response of the components of the surface energy balance to periodic radiative forcing is needed. A linearized model of the soil–vegetation–atmosphere continuum is used that can be solved in terms of harmonics to explore the physical factors that determine the phase characteristics. The dependency of these phase and offsets on environmental parameters—friction velocity, water availability, solar radiation intensity, relative humidity, and boundary layer entrainment—is then analyzed using the model that solves the dynamics of subsurface and atmospheric boundary layer temperatures and heat fluxes in a continuum. Additionally, the asymptotical diurnal lower limit of EF is derived as a function of these surface parameters and shown to be an important indicator of the self-preservation value when the conditions (also identified) for such behavior are present.

Full access
Seung-Bu Park, Steven Böing, and Pierre Gentine

Abstract

The role of surface friction on shallow nonprecipitating convection is investigated using a series of large-eddy simulations with varying surface friction velocity and with a cloud identification algorithm. As surface friction intensifies, convective rolls dominate over convective cells and secondary overturning circulation becomes stronger in the subcloud layer, thus transporting more moisture upward and more heat downward between the subcloud and cloud layers. Identifying individual clouds, using the identification algorithm based on a three-dimensional topological analysis, reveals that intensified surface friction increases the number of clouds and the degree of tilting in the downstream direction. Highly intensified surface friction increases wind shear across the cloud base and induces cloud tilting, which leads to a vertically parabolic profile of liquid water mixing ratio instead of the classical two-layer structure (conditionally unstable and trade inversion layers). Furthermore, cloud tilting induces more cloud cover and more cloud mass flux much above the cloud base (e.g., 0.8 < z < 1.2 km), but less cloud cover and less cloud mass flux in the upper cloud layer (e.g., z > 1.2 km) because of increased lateral entrainment rate. Similarly, profiles of directly measured entrainment and detrainment rates show that detrainment in the lower cloud layer becomes smaller with stronger surface friction.

Full access
Pierre Gentine, Gilles Bellon, and Chiel C. van Heerwaarden

Abstract

The inversion layer (IL) of a clear-sky, buoyancy-driven convective boundary layer is investigated using large-eddy simulations covering a wide range of convective Richardson numbers. A new model of the IL is suggested and tested. The model performs better than previous first-order models of the entrainment and provides physical insights into the main controls of the mixed-layer and IL growths. A consistent prognostic equation of the IL growth is derived, with explicit dependence on the position of the minimum buoyancy flux, convective Richardson number, and relative stratification across the inversion G. The IL model expresses the interrelationship between the position and magnitude of the minimum buoyancy flux and inversion-layer depth. These relationships emphasize why zero-order jump models of the convective boundary layer perform well under a strong inversion and show that these models miss the additional parameter G to fully characterize the entrainment process under a weak inversion. Additionally, the position of the minimum buoyancy flux within the new IL model is shown to be a key component of convective boundary layer entrainment. The new IL model is sufficiently simple to be used in numerical weather prediction or general circulation models as a way to resolve the IL in a low-vertical-resolution model.

Full access
Usama M. Anber, Shuguang Wang, Pierre Gentine, and Michael P. Jensen

Abstract

A framework is introduced to investigate the indirect effect of aerosol loading on tropical deep convection using three-dimensional limited-domain idealized cloud-system-resolving model simulations coupled with large-scale dynamics over fixed sea surface temperature. The large-scale circulation is parameterized using the spectral weak temperature gradient (WTG) approximation that utilizes the dominant balance between adiabatic cooling and diabatic heating in the tropics. The aerosol loading effect is examined by varying the number of cloud condensation nuclei (CCN) available to form cloud droplets in the two-moment bulk microphysics scheme over a wide range of environments from 30 to 5000 cm−3. The radiative heating is held at a constant prescribed rate in order to isolate the microphysical effects. Analyses are performed over the period after equilibrium is achieved between convection and the large-scale environment. Mean precipitation is found to decrease modestly and monotonically when the aerosol number concentration increases as convection gets weaker, despite the increase in cloud liquid water in the warm-rain region and ice crystals aloft. This reduction is traced down to the reduction in surface enthalpy fluxes as an energy source to the atmospheric column induced by the coupling of the large-scale motion, though the gross moist stability remains constant. Increasing CCN concentration leads to 1) a cooler free troposphere because of a reduction in the diabatic heating and 2) a warmer boundary layer because of suppressed evaporative cooling. This dipole temperature structure is associated with anomalously descending large-scale vertical motion above the boundary layer and ascending motion at lower levels. Sensitivity tests suggest that changes in convection and mean precipitation are unlikely to be caused by the impact of aerosols on cloud droplets and microphysical properties but rather by accounting for the feedback from convective adjustment with the large-scale dynamics. Furthermore, a simple scaling argument is derived based on the vertically integrated moist static energy budget, which enables estimation of changes in precipitation given known changes in surfaces enthalpy fluxes and the constant gross moist stability. The impact on cloud hydrometeors and microphysical properties is also examined, and it is consistent with the macrophysical picture.

Full access
Seung-Bu Park, Pierre Gentine, Kai Schneider, and Marie Farge

Abstract

Coherent structures, such as updrafts, downdrafts/shells, and environmental subsidence in the boundary and cloud layers of shallow convection, are investigated using a new classification method. Using large-eddy simulation data, the new method first filters out background turbulence and small-scale gravity waves from the coherent part of the flow, composed of turbulent coherent structures and large-scale transporting gravity waves. Then the algorithm divides this coherent flow into “updrafts,” “downdrafts/shells,” “subsidence,” “ascendance,” and four other flow structures using an octant analysis. The novel method can systematically track structures from the cloud-free boundary layer to the cloud layer, thus allowing systematic analysis of the fate of updrafts and downdrafts. The frequency and contribution of the coherent structures to the vertical mass flux and transport of heat and moisture can then be investigated for the first time. Updrafts, subsidence, and downdrafts/subsiding shells—to a lesser extent—are shown to be the most frequent and dominant contributors to the vertical transport of heat and moisture in the boundary layer. Contrary to previous perspective, environmental subsidence transport is shown to be weak in the cloud layer. Instead, downdrafts/shells are the main downward transport contributors, especially in the trade inversion layer. The newly developed method in this study can be used to better evaluate the entrainment and detrainment of individual—or an ensemble of—coherent structures from the unsaturated boundary layer to the cloud layer.

Full access
Qi Li, Pierre Gentine, Juan Pedro Mellado, and Kaighin A. McColl

Abstract

According to Townsend’s hypothesis, so-called wall-attached eddies are the main contributors to turbulent transport in the atmospheric surface layer (ASL). This is also one of the main assumptions of Monin–Obukhov similarity theory (MOST). However, previous evidence seems to indicate that outer-scale eddies can impact the ASL, resulting in deviations from the classic MOST scaling. We conduct large-eddy simulations and direct numerical simulations of a dry convective boundary layer to investigate the impact of coherent structures on the ASL. A height-dependent passive tracer enables coherent structure detection and conditional analysis based on updrafts and subsidence. The MOST similarity functions computed from the simulation results indicate a larger deviation of the momentum similarity function ϕ m from classical scaling relationships compared to the temperature similarity function ϕ h. The conditional-averaged ϕ m for updrafts and subsidence are similar, indicating strong interactions between the inner and outer layers. However, ϕ h conditioned on subsidence follows the mixed-layer scaling, while its updraft counterpart is well predicted by MOST. Updrafts are the dominant contributors to the transport of momentum and temperature. Subsidence, which comprises eddies that originate from the outer layer, contributes increasingly to the transport of temperature with increasing instability. However, u′ of different signs are distributed symmetrically in subsidence unlike the predominantly negative θ′ as instability increases. Thus, the spatial patterns of uw′ differ compared to θw′ in regions of subsidence. These results depict the mechanisms for departure from the MOST scaling, which is related to the stronger role of subsidence.

Full access
Paolo Davini, Fabio D’Andrea, Seung-Bu Park, and Pierre Gentine

Abstract

The properties of coherent convective structures are analyzed in a nonprecipitating marine nocturnal stratocumulus-topped boundary layer (STBL) with a series of high-resolution large-eddy simulations (LESs). A new classification method based on octant analysis—using vertical velocity and two passive scalars—is introduced to systematically define convective structures in both the cloudy and the cloud-free regions. It is therefore possible to detect and track updrafts, downdrafts, and their turbulent shells (both ascending and subsiding), together with the entraining air from the inversion layer or the free troposphere. The geometrical and thermodynamical characteristics (e.g., areal fraction, temperature, liquid and total water mixing ratio, buoyancy) of those structures are then accurately described, and particular attention is given to their respective contributions to the turbulent transport of mass, heat, and moisture. It is shown that updrafts, downdrafts, and entrainment are equally important to describe the STBL dynamics. Conversely, it is found that shells, although they partially contribute to the mass transport, have a negligible contribution to the turbulent fluxes of heat and moisture.

Open access
Pradipta Parhi, Alessandra Giannini, Pierre Gentine, and Upmanu Lall

Abstract

The evolution of El Niño can be separated into two phases—namely, growth and mature—depending on whether the regional sea surface temperature has adjusted to the tropospheric warming in the remote tropics (tropical regions away from the central and eastern tropical Pacific Ocean). The western Sahel’s main rainy season (July–September) is shown to be affected by the growth phase of El Niño through (i) a lack of neighboring North Atlantic sea surface warming, (ii) an absence of an atmospheric column water vapor anomaly over the North Atlantic and western Sahel, and (iii) higher atmospheric vertical stability over the western Sahel, resulting in the suppression of mean seasonal rainfall as well as number of wet days. In contrast, the short rainy season (October–December) of tropical eastern Africa is impacted by the mature phase of El Niño through (i) neighboring Indian Ocean sea surface warming, (ii) positive column water vapor anomalies over the Indian Ocean and tropical eastern Africa, and (iii) higher atmospheric vertical instability over tropical eastern Africa, leading to an increase in the mean seasonal rainfall as well as in the number of wet days. While the modulation of the frequency of wet days and seasonal mean accumulation is statistically significant, daily rainfall intensity (for days with rainfall > 1 mm day−1), whether mean, median, or extreme, does not show a significant response in either region. Hence, the variability in seasonal mean rainfall that can be attributed to the El Niño–Southern Oscillation phenomenon in both regions is likely due to changes in the frequency of rainfall.

Full access
Filipe Aires, Pierre Gentine, Kirsten L. Findell, Benjamin R. Lintner, and Christopher Kerr

Abstract

Although land–atmosphere coupling is thought to play a role in shaping the mean climate and its variability, it remains difficult to quantify precisely. The present study aims to isolate relationships between early morning surface turbulent fluxes partitioning [i.e., evaporative fraction (EF)] and subsequent afternoon convective precipitation frequency and intensity. A general approach involving statistical relationships among input and output variables, known as sensitivity analysis (SA), is used to develop a reduced complexity metamodel of the linkage between EF and convective precipitation. Two additional quantities characterizing the early morning convective environment, convective triggering potential (CTP) and low-level humidity (HIlow) deficit, are included. The SA approach is applied to the North American Regional Reanalysis (NARR) for June–August (JJA) conditions over the entire continental United States, Mexico, and Central America domain. Five land–atmosphere coupling regimes are objectively characterized based on CTP, HIlow, and EF. Two western regimes are largely atmospherically controlled, with a positive link to CTP and a negative link to HIlow. The other three regimes occupy Mexico and the eastern half of the domain and show positive links to EF and negative links to HIlow, suggesting that both surface fluxes and atmospheric humidity play a role in the triggering of rainfall in these regions. The regimes associated with high mean EF also tend to have high sensitivity of rainfall frequency to variations in EF. While these results may be sensitive to the choice of dataset, the approach can be applied across observational, reanalysis, and model datasets and thus represents a potentially powerful tool for intercomparison and validation as well as for characterizing land–atmosphere interaction regimes.

Full access
Fabio D’Andrea, Pierre Gentine, Alan K. Betts, and Benjamin R. Lintner

Abstract

A model unifying the representation of the planetary boundary layer and dry, shallow, and deep convection, the probabilistic plume model (PPM), is presented. Its capacity to reproduce the triggering of deep convection over land is analyzed in detail. The model accurately reproduces the timing of shallow convection and of deep convection onset over land, which is a major issue in many current general climate models.

PPM is based on a distribution of plumes with varying thermodynamic states (potential temperature and specific humidity) induced by surface-layer turbulence. Precipitation is computed by a simple ice microphysics, and with the onset of precipitation, downdrafts are initiated and lateral entrainment of environmental air into updrafts is reduced.

The most buoyant updrafts are responsible for the triggering of moist convection, causing the rapid growth of clouds and precipitation. Organization of turbulence in the subcloud layer is induced by unsaturated downdrafts, and the effect of density currents is modeled through a reduction of the lateral entrainment. The reduction of entrainment induces further development from the precipitating congestus phase to full deep cumulonimbus.

Model validation is performed by comparing cloud base, cloud-top heights, timing of precipitation, and environmental profiles against cloud-resolving models and large-eddy simulations for two test cases. These comparisons demonstrate that PPM triggers deep convection at the proper time in the diurnal cycle and produces reasonable precipitation. On the other hand, PPM underestimates cloud-top height.

Full access