Search Results
You are looking at 1 - 1 of 1 items for :
- Author or Editor: Pierre-Yves Le Traon x
- Journal of Climate x
- Refine by Access: All Content x
Abstract
Global ocean sampling with autonomous floats going to 4000–6000 m, known as the deep Argo array, constitutes one of the next challenges for tracking climate change. The question here is how such a global deep array will impact ocean reanalyses. Based on the different behavior of four ocean reanalyses, we first identified that large uncertainty exists in current reanalyses in representing local heat and freshwater fluxes in the deep ocean (1 W m−2 and 10 cm yr−1 regionally). Additionally, temperature and salinity comparison with deep Argo observations demonstrates that reanalysis errors in the deep ocean are of the same size as, or even stronger than, the deep ocean signal. An experimental approach, using the 1/4° GLORYS2V4 (Global Ocean Reanalysis and Simulation) system, is then presented to anticipate how the evolution of the global ocean observing system (GOOS), with the advent of deep Argo, would contribute to ocean reanalyses. Based on observing system simulation experiments (OSSE), which consist in extracting observing system datasets from a realistic simulation to be subsequently assimilated in an experimental system, this study suggests that a global deep Argo array of 1200 floats will significantly constrain the deep ocean by reducing temperature and salinity errors by around 50%. Our results also show that such a deep global array will help ocean reanalyses to reduce error in temperature changes below 2000 m, equivalent to global ocean heat fluxes from 0.15 to 0.07 W m−2, and from 0.26 to 0.19 W m−2 for the entire water column. This work exploits the capabilities of operational systems to provide comprehensive information for the evolution of the GOOS.
Abstract
Global ocean sampling with autonomous floats going to 4000–6000 m, known as the deep Argo array, constitutes one of the next challenges for tracking climate change. The question here is how such a global deep array will impact ocean reanalyses. Based on the different behavior of four ocean reanalyses, we first identified that large uncertainty exists in current reanalyses in representing local heat and freshwater fluxes in the deep ocean (1 W m−2 and 10 cm yr−1 regionally). Additionally, temperature and salinity comparison with deep Argo observations demonstrates that reanalysis errors in the deep ocean are of the same size as, or even stronger than, the deep ocean signal. An experimental approach, using the 1/4° GLORYS2V4 (Global Ocean Reanalysis and Simulation) system, is then presented to anticipate how the evolution of the global ocean observing system (GOOS), with the advent of deep Argo, would contribute to ocean reanalyses. Based on observing system simulation experiments (OSSE), which consist in extracting observing system datasets from a realistic simulation to be subsequently assimilated in an experimental system, this study suggests that a global deep Argo array of 1200 floats will significantly constrain the deep ocean by reducing temperature and salinity errors by around 50%. Our results also show that such a deep global array will help ocean reanalyses to reduce error in temperature changes below 2000 m, equivalent to global ocean heat fluxes from 0.15 to 0.07 W m−2, and from 0.26 to 0.19 W m−2 for the entire water column. This work exploits the capabilities of operational systems to provide comprehensive information for the evolution of the GOOS.