Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Q. Min x
  • Refine by Access: All Content x
Clear All Modify Search
R. Li, Q-L. Min, and L. C. Harrison


The indirect aerosol effect (Twomey effect) is studied during a Saharan dust-transport event that presented an unusually favorable combination of a dust-loading gradient across clouds with warm cloud-top temperatures. Standard retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), and the Clouds and the Earth’s Radiant Energy System (CERES) provide cloud-top temperature (a surrogate for height), liquid water path (LWP), classification of precipitation regime, and radiation flux. The authors correlate a retrieved mean effective droplet radius (re) versus the number concentration of cloud condensation nuclei (N CCN), using the regressed slope d lnre/d lnN CCN as the estimator of the aerosol indirect effect (AIE). Results demonstrate statistically significant AIE for only some of the segregated cloud classes. For nonprecipitating clouds (the most direct test of Twomey effect), the estimated AIE is effectively −0.07 over all wider temperature bands and is statistically significant from 1.1 to 1.9 σ. Further classification by LWP strengthens both the AIE (for all LWP > 150 g m−2) to approximately −0.16, and substantially increases the statistical significance, to better than 5σ.

Shortwave radiation forcing of dust aerosols is also estimated directly from satellite measurements. The direct shortwave (SW) radiation effect of Saharan dusts at solar zenith angle 21.6° is 53.48 ± 8.56 W m−2 per unit aerosol optical depth, with a correlation coefficient of 0.92. The indirect SW forcing of Saharan dust is 29.88 ± 2.42 W m−2 per unit AOD for clouds with LWP of 100 g m−2.

Full access
M. J. Bartholomew, R. M. Reynolds, A. M. Vogelmann, Q. Min, R. Edwards, and S. Smith


The design and operation of a Thin-Cloud Rotating Shadowband Radiometer (TCRSR) described here was used to measure the radiative intensity of the solar aureole and enable the simultaneous retrieval of cloud optical depth, drop effective radius, and liquid water path. The instrument consists of photodiode sensors positioned beneath two narrow metal bands that occult the sun by moving alternately from horizon to horizon. Measurements from the narrowband 415-nm channel were used to demonstrate a retrieval of the cloud properties of interest. With the proven operation of the relatively inexpensive TCRSR instrument, its usefulness for retrieving aerosol properties under cloud-free skies and for ship-based observations is discussed.

Full access
D. D. Turner, A. M. Vogelmann, R. T. Austin, J. C. Barnard, K. Cady-Pereira, J. C. Chiu, S. A. Clough, C. Flynn, M. M. Khaiyer, J. Liljegren, K. Johnson, B. Lin, C. Long, A. Marshak, S. Y. Matrosov, S. A. McFarlane, M. Miller, Q. Min, P. Minimis, W. O'Hirok, Z. Wang, and W. Wiscombe

Many of the clouds important to the Earth's energy balance, from the Tropics to the Arctic, contain small amounts of liquid water. Longwave and shortwave radiative fluxes are very sensitive to small perturbations of the cloud liquid water path (LWP), when the LWP is small (i.e., < 100 g m−2; clouds with LWP less than this threshold will be referred to as “thin”). Thus, the radiative properties of these thin liquid water clouds must be well understood to capture them correctly in climate models. We review the importance of these thin clouds to the Earth's energy balance, and explain the difficulties in observing them. In particular, because these clouds are thin, potentially mixed phase, and often broken (i.e., have large 3D variability), it is challenging to retrieve their microphysical properties accurately. We describe a retrieval algorithm intercomparison that was conducted to evaluate the issues involved. The intercomparison used data collected at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site and included 18 different algorithms to evaluate their retrieved LWP, optical depth, and effective radii. Surprisingly, evaluation of the simplest case, a single-layer overcast stratocumulus, revealed that huge discrepancies exist among the various techniques, even among different algorithms that are in the same general classification. This suggests that, despite considerable advances that have occurred in the field, much more work must be done, and we discuss potential avenues for future research.)

Full access