Search Results

You are looking at 1 - 10 of 33 items for

  • Author or Editor: Qiang Li x
  • Refine by Access: All Content x
Clear All Modify Search
J. Li and Qiang Fu

Abstract

A scheme that can handle cloud infrared scattering based on the absorption approximation is developed. In a two-stream mode, the new scheme produces more accurate results than those from the modified two-stream discrete ordinate method. For low and middle clouds, the two-stream version of the scheme produces a flux error less than 1 W m−2 and a heating rate error less than 0.5 K day−1. With high clouds, the errors in calculated fluxes and heating rates are less than 1.4 W m−2 and 1.5 K day−1, respectively. The four-stream version of the proposed scheme is slightly inferior to the four-stream discrete ordinate method. However, as opposed to the discrete ordinate technique, this scheme treats cloud-free layers the same as the absorption approximation. Therefore, numerically, it is much more efficient. Considering the radiative transfer module only, in a two-stream mode, the new scheme, which considers multiple scattering, uses only about 50% more CPU time than the absorption approximation method for a 100-layer column atmosphere with 20 cloudy layers.

Full access
Qiang Li and Erik Lindborg

Abstract

Recently, it has been discussed whether the mesoscale energy spectra in the upper troposphere and lower stratosphere are generated by weakly or strongly nonlinear dynamics. A necessary condition for weak nonlinearity is that the Rossby number Ro ≡ |ζ z|/f ≪ 1, where ζ z is the vertical vorticity and f is the Coriolis parameter. First, it is shown that Ro can be estimated by integration of the rotational wavenumber energy spectrum E r. Then divergence and rotational energy spectra and their ratio, RE d/E r, are calculated from the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) dataset, and it is shown that at least 1000 flight segments are needed to obtain converged results. It is found that R < 1 in the upper troposphere, ruling out the hypothesis that the spectra are produced by inertia–gravity waves with frequencies larger than f. In the lower stratosphere R is slightly larger than unity. An analysis separating between land and ocean data shows that E d and temperature spectra have somewhat larger magnitude over land compared to ocean in the upper troposphere—a signature of orographically or convectively forced gravity waves. No such effect is seen in the lower stratosphere. At midlatitudes the Rossby number is on the order of unity and at low latitudes it is larger than unity, indicating that strong nonlinearities are prevalent. Also the temperature spectra, when converted into potential energy spectra, have larger magnitude than predicted by the weakly nonlinear wave hypothesis.

Full access
Qiang Li and David M. Farmer

Abstract

Time series observations of nonlinear internal waves in the deep basin of the South China Sea are used to evaluate mechanisms for their generation and evolution. Internal tides are generated by tidal currents over ridges in Luzon Strait and steepen as they travel west, subsequently generating high-frequency nonlinear waves. Although nonlinear internal waves appear repeatedly on the western slopes of the South China Sea, their appearance in the deep basin is intermittent and more closely related to the amplitude of the semidiurnal than the predominant diurnal tidal current in Luzon Strait. As the internal tide propagates westward, it evolves under the influence of nonlinearity, rotation, and nonhydrostatic dispersion. The interaction between nonlinearity and rotation transforms the internal tide into a parabolic or corner shape. A fully nonlinear two-layer internal wave model explains the observed characteristics of internal tide evolution in the deep basin for different representative forcing conditions and allows assessment of differences between the fully and weakly nonlinear descriptions. Matching this model to a wave generation solution for representative topography in Luzon Strait leads to predictions in the deep basin consistent with observations. Separation of the eastern and western ridges is close to the internal semidiurnal tidal wavelength, contributing to intensification of the westward propagating semidiurnal component. Doppler effects of internal tide generation, when combined with a steady background flow, suggest an explanation for the apparent suppression of nonlinear wave generation during periods of westward intrusion of the Kuroshio.

Full access
Dehai Song, Wen Wu, and Qiang Li

Abstract

Bay–shelf exchange is critical to coastal systems because it promotes self-purification or pollution dilution of the systems. In this study, the effects of wave–current interactions on bay–shelf exchange are explored in a micromesotidal system—Daya Bay in southern China. Waves can enlarge the shear-induced seaward transport and reduce the residual-current-induced landward transport, which benefits the bay–shelf exchange; however, tides work oppositely and slow the wave-induced bay–shelf exchange through vertical mixing and reduced shear-induced exchange. Five wave–current interactions are compared, and it is found that the depth-dependent wave radiation stress (WRS) contributes most to the bay–shelf exchange, followed by the wave dissipation as a source term in the turbulence kinetic energy equation, and the mean current advection and refraction of wave energy (CARWE). The vertical transfer of wave-generated pressure to the mean momentum equation (also known as the form drag) and the combined wave–current bottom stress (CWCBS) play minor roles in the bay–shelf exchange. The bay–shelf exchange is faster under southerly wind than under northerly wind because the bay is facing southeast; synoptic events such as storms enhance the bay–shelf exchange. The CARWE terms are dominant in both seasonal and synoptic variations of the bay–shelf exchange because they can considerably change the distribution of significant wave height. The WRS changes the bay–shelf exchange mainly through altering the flow velocity, whereas the wave dissipation on turbulence alters the vertical mixing. The form drag and the CWCBS have little impact on the bay–shelf exchange or its seasonal and synoptic variations.

Open access
Qiang Wang, Yinxia Wang, Junpeng Sui, Weidong Zhou, and Daning Li

Abstract

The thermal state of the South China Sea (SCS) modulates the regional climate variability over Southeast Asia. Currents in the SCS are an important factor impacting the thermal state of the SCS, but their relationship is not clearly understood. There is an asymmetry in the thermal effect of weak and strong SCS winter currents. Weak SCS winter currents favor stable warm advection of mean temperature by the anomalous horizontal velocity (i.e., Advha), which drives the SCS into a warm phase. However, the cooling effect of strong SCS winter currents on the SCS is weak, due to small and variable negative Advha. The basin-integrated Advha is primarily set by meridional heat flux in the southern SCS, which is mainly determined by the western boundary current (WBC) anomaly. The eastern boundary current (EBC) anomaly with opposite direction of WBC anomaly acts to weaken the Advha. In weak (strong) SCS winter current years, the wind stress anomaly over the southern SCS is localized around the western (eastern) boundary, which induces a weak (strong) EBC anomaly. Therefore, warm Advha in weak SCS winter current years is large enough to drive the SCS into a warm phase. However, the negative Advha in strong SCS winter current years is variable, which can be occasionally offset by positive advection of anomalous temperature by the mean horizontal velocity and then the SCS presents a warm phase, as in 1998. Thus, the strong SCS winter current exerts a weak cooling effect on the SCS.

Full access
Qian Li, Shaoen Tang, Xuan Peng, and Qiang Ma

Abstract

Atmospheric visibility is an important element of meteorological observation. With existing methods, defining image features that reflect visibility accurately and comprehensively is difficult. This paper proposes a visibility detection method based on transfer learning using deep convolutional neural networks (DCNN) that addresses issues caused by a lack of sufficient visibility labeled datasets. In the proposed method, each image was first divided into several subregions, which were encoded to extract visual features using a pretrained no-reference image quality assessment neural network. Then a support vector regression model was trained to map the extracted features to the visibility. The fusion weight of each subregion was evaluated according to the error analysis of the regression model. Finally, the neural network was fine-tuned to better fit the problem of visibility detection using the current detection results conversely. Experimental results demonstrated that the detection accuracy of the proposed method exceeds 90% and satisfies the requirements of daily observation applications.

Open access
Yanan Liang, Yanpeng Cai, Xuan Wang, Chunhui Li, and Qiang Liu

Abstract

Cascade reservoirs were designed for the Yalong River basin, which ranks as the third-largest hydropower base in China. Reservoir impoundment has certain impacts on local climate, but few researches focus on this field. This paper integrates spatiotemporal analysis techniques and geostatistical methods to identify the reservoir projected meteorological indices (MIs) variations as well as the impact scope under different circumstances. Results show that the reservoir projected variations of moisture indexes were much more significant than temperatures. Anthropogenic disturbance has led to a dramatic decrease of relative humidity in the past decade, far beyond its periodic amplitude range. Moreover, dry valleys faced more serious drought risk, but reservoir impoundment of this region alleviated the local drought risk. The daily minimum temperature, relative to the maximum temperature, was more sensitive to catchment changes with an earlier appearance of temperature zone variation. Since impounding, the MIs’ internal relationships in nondry valleys varied significantly more than that in dry valleys, with a positive correlation of 0.7 between the relative humidity and precipitation weakening greatly. The severe warming hotspots are distributed in the upper reach and have a probability of 0.95–1 to exceed the 1.5°C IPCC control target. This study provides references for the disturbance of reservoir impoundment to local climate at multiple temporal–spatial scales under different circumstances and contributes to the MIs variation pattern identification and quantitative risk assessment.

Restricted access
Qiang Li, David M. Farmer, Timothy F. Duda, and Steve Ramp

Abstract

The performance of pressure sensor–equipped inverted echo sounders for monitoring nonlinear internal waves is examined. The inverted echo sounder measures the round-trip acoustic travel time from the sea floor to the sea surface and thus acquires vertically integrated information on the thermal structure, from which the first baroclinic mode of thermocline motion may be inferred. This application of the technology differs from previous uses in that the wave period (∼30 min) is short, requiring a more rapid transmission rate and a different approach to the analysis. Sources of error affecting instrument performance include tidal effects, barotropic adjustment to internal waves, ambient acoustic noise, and sea surface roughness. The latter two effects are explored with a simulation that includes surface wave reconstruction, acoustic scattering based on the Kirchhoff approximation, wind-generated noise, sound propagation, and the instrument’s signal processing circuitry. Bias is introduced as a function of wind speed, but the simulation provides a basis for bias correction.

The assumption that the waves do not significantly affect the mean stratification allows for a focus on the dynamic response. Model calculations are compared with observations in the South China Sea by using nearby temperature measurements to provide a test of instrument performance. After applying corrections for ambient noise and surface roughness effects, the inverted echo sounder exhibits an RMS variability of approximately 4 m in the estimated depth of the eigenfunction maximum in the wind speed range 0 ≤ U 10 ≤ 10 m s−1. This uncertainty may be compared with isopycnal excursions for nonlinear internal waves of 100 m, showing that the observational approach is effective for measurements of nonlinear internal waves in this environment.

Full access
Qiang Li, Xianzhong Mao, John Huthnance, Shuqun Cai, and Samuel Kelly

Abstract

Reflection and transmission of normally incident internal waves propagating across a geostrophic front, like the Kuroshio or Gulf Stream, are investigated using a modified linear internal wave equation. A transformation from depth to buoyancy coordinates converts the equation to a canonical partial differential equation, sharing properties with conventional internal wave theory in the absence of a front. The equation type is determined by a parameter Δ, which is a function of horizontal and vertical gradients of buoyancy, the intrinsic frequency of the wave, and the effective inertial frequency, which incorporates the horizontal shear of background geostrophic flow. In the Northern Hemisphere, positive vorticity of the front may produce Δ ≤ 0, that is, a “forbidden zone,” in which wave solutions are not permitted. Thus, Δ = 0 is a virtual boundary that causes wave reflection and refraction, although waves may tunnel through forbidden zones that are weak or narrow. The slope of the surface and bottom boundaries in buoyancy coordinates (or the slope of the virtual boundary if a forbidden zone is present) determine wave reflection and transmission. The reflection coefficient for normally incident internal waves depends on rotation, isopycnal slope, topographic slope, and incident mode number. The scattering rate to high vertical modes allows a bulk estimate of the mixing rate, although the impact of internal wave-driven mixing on the geostrophic front is neglected.

Open access
Wen-Yu Huang, Bin Wang, Yong-Qiang Yu, and Li-Juan Li

Abstract

Better computational stability is achieved in an improved version of the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG)/Institute of Atmospheric Physics (IAP) Climate Ocean Model, version 2 (LICOM2, the standard version), after improvements to the implementations of the vertical mixing, mesoscale eddy parameterization, and bottom drag schemes. The large warm biases of LICOM2 in the western Pacific Ocean and eastern Indian Ocean warm pool and on the east coast of the Pacific Ocean are significantly improved. The salinity bias in the tropical Pacific Ocean related to the warm bias of the warm pool is also alleviated. The simulation of the Atlantic meridional overturning circulation is improved because of enhanced vertical mixing in the high latitudes of the North Atlantic Ocean. The new version also presents a stronger Deacon cell, and thus a more powerful Antarctic Circumpolar Current that is closer to the observation, due to weaker southward mesoscale eddy transport in the Southern Ocean.

Full access