Search Results

You are looking at 1 - 10 of 33 items for

  • Author or Editor: Qiang Wang x
  • All content x
Clear All Modify Search
Qiang Wang

Abstract

The author has attempted to detect the presence of low-dimensional deterministic chaos in temperature data by estimating the correlation dimension with the Hill estimate that has been recently developed by Mikosch and Wang. There is no convincing evidence of low dimensionality with either global dataset (Southern Hemisphere monthly average temperatures from 1858 to 1984) or local temperature dataset (daily minimums at Auckland, New Zealand). Any apparent reduction in the dimension estimates appears to be due large1y, if not entirely, to effects of statistical bias, but neither is it a purely random stochastic process. The dimension of the climatic attractor may be significantly larger than 10.

Full access
Xia Liu, Mu Mu, and Qiang Wang

Abstract

Based on the Regional Ocean Modeling System (ROMS) and the conditional nonlinear optimal perturbation (CNOP) method, we explore the nonlinear optimal triggering perturbation of the Kuroshio large meander (LM) and its evolution, and reveal the role of nonlinear physical processes in the formation of the LM path. The results show that the large amplitudes of the perturbations are mainly located in the upper 2000 m in the southeastern area of Kyushu (29°–32°N, 131°–134°E), where the eastward propagation of the cold anomaly is vital to the formation of the LM path. By analyzing the depth-integrated vorticity equation of the perturbation, we find that linear advection, namely, the interaction between the perturbation and the reference field, tends to move the cyclonic eddy induced by the optimal triggering perturbation eastward, while the nonlinear advection associated with the interaction of perturbations tends to move the cyclonic eddy westward. The opposing effects of the nonlinear advection and the linear advection slow the eastward movement of the cyclonic eddy so that the eddy has a chance to effectively develop, eventually leading to the formation of the Kuroshio LM path.

Open access
Qiang Wang, Youmin Tang, and Henk A. Dijkstra

Abstract

A new optimization strategy is proposed to identify the sensitivities of simulations of atmospheric and oceanic models to uncertain parameters. The strategy is based on a nonlinear optimization method that is able to estimate the maximum values of specific parameter sensitivity measures; meanwhile, it takes into account interactions among uncertain parameters. It is tested using the Lorenz’63 model and an intermediate complexity 2.5-layer shallow-water model of the North Pacific Ocean. For the Lorenz’63 model, it is shown that the parameter sensitivities of the model results depend on the initial conditions. For the 2.5-layer shallow-water model used to simulate the Kuroshio large meander (KLM) south of Japan, the optimization strategy reveals that the prediction of the KLM path is insensitive to the uncertainties in the bottom friction coefficient, the interfacial friction coefficient, and the lateral friction coefficient. Rather, the KLM prediction is relatively sensitive to the uncertainties of the reduced gravity representing ocean stratification and the wind stress coefficient.

Full access
Qiang Wang, Yinxia Wang, Junpeng Sui, Weidong Zhou, and Daning Li

Abstract

The thermal state of the South China Sea (SCS) modulates the regional climate variability over Southeast Asia. Currents in the SCS are an important factor impacting the thermal state of the SCS, but their relationship is not clearly understood. There is an asymmetry in the thermal effect of weak and strong SCS winter currents. Weak SCS winter currents favor stable warm advection of mean temperature by the anomalous horizontal velocity (i.e., Advha), which drives the SCS into a warm phase. However, the cooling effect of strong SCS winter currents on the SCS is weak, due to small and variable negative Advha. The basin-integrated Advha is primarily set by meridional heat flux in the southern SCS, which is mainly determined by the western boundary current (WBC) anomaly. The eastern boundary current (EBC) anomaly with opposite direction of WBC anomaly acts to weaken the Advha. In weak (strong) SCS winter current years, the wind stress anomaly over the southern SCS is localized around the western (eastern) boundary, which induces a weak (strong) EBC anomaly. Therefore, warm Advha in weak SCS winter current years is large enough to drive the SCS into a warm phase. However, the negative Advha in strong SCS winter current years is variable, which can be occasionally offset by positive advection of anomalous temperature by the mean horizontal velocity and then the SCS presents a warm phase, as in 1998. Thus, the strong SCS winter current exerts a weak cooling effect on the SCS.

Restricted access
Qiang Zhang, Wenyu Wang, Sheng Wang, and Liang Zhang

Abstract

In most parts of the world, pan evaporation decreases with increased air temperature rather than increases, which is known as the “evaporation paradox.” The semiarid Loess Plateau, which is sensitive to global climate change and ecological variations, has a unique warming and drying climate. The authors of this study consider whether pan evaporation shows the same decreasing trend in this unique environment. Meteorological observations of the typical semiarid Dingxi in the Loess Plateau from 1960 to 2010 were used to analyze the variation in pan evaporation and its responses to climatic factors. It was found that the pan evaporation has increased considerably over the past 50 yr, which does not support the evaporation paradox proposed in previous studies. A multifactor model developed to simulate the independent impacts of climate factors on pan evaporation indicated that the temperature, humidity, wind speed, and low cloud cover variations contributed to pan evaporation by 46.18%, 25.90%, 2.48%, and 25.44%, respectively. The increased temperature, decreased relative humidity, and decreased low cloud cover all caused an increase in pan evaporation, unlike many parts of the world where increased low cloud cover offsets the effects of increased temperature and decreased relative humidity on pan evaporation. This may explain why the evaporation paradox occurs. If all relevant factors affecting pan evaporation are considered, it is possible the paradox will not occur. Thus in warm and drying regions, the increased pan evaporation will lead to increasingly arid conditions, which may exacerbate drought and flood disaster occurrences worldwide.

Full access
Jiacheng Wang, Qiang Zhao, Shengcheng Cui, and Chengjie Zhu

Abstract

Coastal and island Aerosol Robotic Network (AERONET) sites are used to determine characteristic aerosol modes over marine environments. They are compared with the assumed modes used in the operational Moderate Resolution Imaging Spectroradiometer (MODIS) ocean aerosol algorithm, and the results show that 1) the standard deviation values of three fine aerosol modes (0.6) and one dustlike aerosol mode (0.8) are much higher than the corresponding statistical AERONET modal values (0.45 and 0.6, respectively). The values of three sea salt aerosol modes (0.6) are somewhat lower than the corresponding statistical AERONET modal value (0.675). 2) The number median radius of the current fine and dustlike aerosol modes cannot span the dynamic range of corresponding aerosol distribution properly. 3) AERONET products show that the standard deviation and the number median radius exhibit an obvious negative correlation, especially for sea salt and dustlike aerosol modes. According to this, a refinement of the current aerosol modes is made. These revised modes are used in a version of the MODIS retrieval over ocean. Compared with the current aerosol modes: 1) more retrieved aerosol optical depths (AODs) from the revised aerosol modes lie within the expected error bars and 2) the linear regression lines of the retrievals from the revised aerosol modes and AERONET are closer to the 1:1 line.

Full access
Ping Zhao, Song Yang, Huijun Wang, and Qiang Zhang

Abstract

Summertime relationships between the Asian–Pacific Oscillation (APO) and climate anomalies over Asia, the North Pacific, and North America are examined on an interdecadal time scale. The values of APO were low from the 1880s to the mid-1910s and high from the 1920s to the 1940s. When the APO was higher, tropospheric temperatures were higher over Asia and lower over the Pacific and North America. From the low-APO decades to the high-APO decades, both upper-tropospheric highs and lower-tropospheric low pressure systems strengthened over South Asia and weakened over North America. As a result, anomalous southerly–southwesterly flow prevailed over the Asian monsoon region, meaning stronger moisture transport over Asia. On the contrary, the weakened upper-tropospheric high and lower-tropospheric low over North America caused anomalous sinking motion over the region. As a result, rainfall generally enhanced over the Asian monsoon regions and decreased over North America.

Full access
Qiang Wang, Youmin Tang, Stefano Pierini, and Mu Mu

Abstract

The effects of optimal initial error on the short-range prediction of transition processes between the Kuroshio Extension (KE) bimodalities are analyzed using a reduced-gravity shallow-water model and the singular vector (SV) approach. Emphasis is placed on the spatial structures, growing processes, and effects of the SVs. The results show that the large values of the SVs are mainly located in the first crest region of the KE (around 35°N, 144°E) and in the Kuroshio large meander (KLM) region south of Japan (around 32°N, 139.5°E). The fast growths of the SVs have important impacts on the prediction of transition of the KE bimodality. The initial error with +SV pattern (with positive anomalies in the first crest region of the KE and negative anomalies in the KLM region) tends to strengthen the KE and shift it toward the high-energy state, while the error with −SV pattern is prone to weaken the KE and shift it toward the low-energy state. In addition, the SV-type initial errors grow more quickly in the transition phase of the KE from the high-energy to the low-energy state than in the opposite transition phase. A perturbation energy analysis illustrates that different physical processes are responsible for the error growth in the KE region for different transition phases of the KE; barotropic instability plays a dominant role in the error growth in the low-to-high (LH) energy phase, while the error evolution in the high-to-low (HL) energy phase is mainly caused by advection processes.

Full access
Jiepeng Chen, Xin Wang, Wen Zhou, Chunzai Wang, Qiang Xie, Gang Li, and Sheng Chen

Abstract

Previous research has suggested that the anomalous western North Pacific anticyclone (WNPAC) can generally persist from an El Niño mature winter to the subsequent summer, influencing southern China precipitation significantly, where southern China includes the Yangtze River valley and South China. Since the late 1970s, three extreme El Niño events have been recorded: 1982/83, 1997/98, and 2015/16. There was a sharp contrast in the change in southern China rainfall and corresponding atmospheric circulations in the decaying August between the 2015/16 extreme El Niño event and the earlier two extreme El Niño events. Enhanced rainfall in the middle and upper reaches of the Yangtze River and suppressed rainfall over South China resulted from basinwide warming in the tropical Indian Ocean induced by the extreme El Niño in August 1983 and 1998, which was consistent with previous studies. However, an anomalous western North Pacific cyclone emerged in August 2016 and then caused positive rainfall anomalies over South China and negative rainfall anomalies from the Yangtze River to the middle and lower reaches of the Yellow River. Without considering the effect of the long-term global warming trend, in August 2016 the negative SST anomalies over the western Indian Ocean and cooling in the north tropical Atlantic contributed to the anomalous western North Pacific cyclone and a rainfall anomaly pattern with opposite anomalies in South China and the Yangtze River region. Numerical experiments with the CAM5 model are conducted to confirm that cooler SST in the western Indian Ocean contributed more than cooler SST in the north tropical Atlantic to the anomalous western North Pacific cyclone and anomalous South China rainfall.

Full access
Ke Huang, Weiqing Han, Dongxiao Wang, Weiqiang Wang, Qiang Xie, Ju Chen, and Gengxin Chen

Abstract

This paper investigates the features of the Equatorial Intermediate Current (EIC) in the Indian Ocean and its relationship with basin resonance at the semiannual time scale by using in situ observations, reanalysis output, and a continuously stratified linear ocean model (LOM). The observational results show that the EIC is characterized by prominent semiannual variations with velocity reversals and westward phase propagation and that it is strongly influenced by the pronounced second baroclinic mode structure but with identifiable vertical phase propagation. Similar behavior is found in the reanalysis data and LOM results. The simulation of wind-driven equatorial wave dynamics in the LOM reveals that the observed variability of the EIC can be largely explained by the equatorial basin resonance at the semiannual period, when the second baroclinic Rossby wave reflected from the eastern boundary intensifies the directly forced equatorial Kelvin and Rossby waves in the basin interior. The sum of the first 10 modes can reproduce the main features of the EIC. Among these modes, the resonant second baroclinic mode makes the largest contribution, which dominates the vertical structure, semiannual cycle, and westward phase propagation of the EIC. The other 9 modes, however, are also important, and the superposition of the first 10 modes produces downward energy propagation in the equatorial Indian Ocean.

Full access