Search Results

You are looking at 1 - 10 of 14 items for

  • Author or Editor: Qiang Xie x
  • All content x
Clear All Modify Search
Shang-Ping Xie and Zhen-Qiang Zhou

Abstract

The spatial structure of atmospheric anomalies associated with El Niño–Southern Oscillation varies with season because of the seasonal variations in sea surface temperature (SST) anomaly pattern and in the climatological basic state. The latter effect is demonstrated using an atmospheric model forced with a time-invariant pattern of El Niño warming over the equatorial Pacific. The seasonal modulation is most pronounced over the north Indian Ocean to northwest Pacific where the monsoonal winds vary from northeasterly in winter to southwesterly in summer. Specifically, the constant El Niño run captures the abrupt transition from a summer cyclonic to winter anticyclonic anomalous circulation over the northwest Pacific, in support of the combination mode idea that emphasizes nonlinear interactions of equatorial Pacific SST forcing and the climatological seasonal cycle. In post–El Niño summers when equatorial Pacific warming has dissipated, SST anomalies over the Indo–northwest Pacific Oceans dominate and anchor the coherent persisting anomalous anticyclonic circulation. A conceptual model is presented that incorporates the combination mode in the existing framework of regional Indo–western Pacific Ocean coupling.

Full access
Zhen-Qiang Zhou and Shang-Ping Xie

Abstract

Climate models suffer from long-standing biases, including the double intertropical convergence zone (ITCZ) problem and the excessive westward extension of the equatorial Pacific cold tongue. An atmospheric general circulation model is used to investigate how model biases in the mean state affect the projection of tropical climate change. The model is forced with a pattern of sea surface temperature (SST) increase derived from a coupled simulation of global warming but uses an SST climatology derived from either observations or a coupled historical simulation. The comparison of the experiments reveals that the climatological biases have important impacts on projected changes in the tropics. Specifically, during February–April when the climatological ITCZ displaces spuriously into the Southern Hemisphere, the model overestimates (underestimates) the projected rainfall increase in the warmer climate south (north) of the equator over the eastern Pacific. Furthermore, the global warming–induced Walker circulation slowdown is biased weak in the projection using coupled model climatology, suggesting that the projection of the reduced equatorial Pacific trade winds may also be underestimated. This is related to the bias that the climatological Walker circulation is too weak in the model, which is in turn due to a too-weak mean SST gradient in the zonal direction. The results highlight the importance of improving the climatological simulation for more reliable projections of regional climate change.

Full access
Wenyu Zhou, Shang-Ping Xie, and Zhen-Qiang Zhou

Abstract

The rapid intensification of convective activity in mid-July over the northwest Pacific marks the final stage of the Asian summer monsoon, accompanied by major shifts in regional rainfall and circulation patterns. An entraining plume model is used to investigate the physical processes underlying the abrupt convective jump. Despite little change in sea surface temperature (SST), gradual lower-troposphere mixing leads to a threshold transition in the model as follows. Before mid-July, although SST is already high (29°C), the convective plume is inhibited by the capping inversion above the trade cumulus boundary layer. As the lower troposphere is gradually mixed, the boundary layer top rises with reduced atmospheric stability and increased humidity in the lower troposphere. These factors weaken the inhibition effect of the inversion on the entraining plume. As soon as the plume is able to overcome the inversion barrier, it can rise all the way to the upper troposphere. This marks an abrupt threshold transition to a deep convection regime with heavy rainfall. The convective available potential energy (CAPE) of the entraining plume is found to be a better indicator of the rainfall intensity compared to the conventional undiluted CAPE. The latter fails to capture the onset by neglecting interactions between convective clouds and the environment. Current general circulation models (GCMs) fail to capture the abrupt convective jump and instead simulate a rather smooth seasonal evolution of rainfall. Compared to observations, GCMs simulate a higher trade cumulus top with excessive mixing in the lower troposphere. Convection is no longer inhibited by the inversion barrier, and rainfall simply follows the smooth variation of SST.

Full access
Zhen-Qiang Zhou, Renhe Zhang, and Shang-Ping Xie

Abstract

Year-to-year variability of surface air temperature (SAT) over central India is most pronounced in June. Climatologically over central India, SAT peaks in May, and the transition from the hot premonsoon to the cooler monsoon period takes place around 9 June, associated with the northeastward propagation of intraseasonal convective anomalies from the western equatorial Indian Ocean. Positive (negative) SAT anomalies during June correspond to a delayed (early) Indian summer monsoon onset and tend to occur during post–El Niño summers. On the interannual time scale, positive SAT anomalies of June over central India are associated with positive SST anomalies over both the equatorial eastern–central Pacific and Indian Oceans, representing El Niño effects in developing and decay years, respectively. Although El Niño peaks in winter, the correlations between winter El Niño and Indian SAT peak in the subsequent June, representing a post–El Niño summer capacitor effect associated with positive SST anomalies over the north Indian Ocean. These results have important implications for the prediction of Indian summer climate including both SAT and summer monsoon onset over central India.

Full access
Zhen-Qiang Zhou, Shang-Ping Xie, Xiao-Tong Zheng, Qinyu Liu, and Hai Wang

Abstract

El Niño–Southern Oscillation (ENSO) induces climate anomalies around the globe. Atmospheric general circulation model simulations are used to investigate how ENSO-induced teleconnection patterns during boreal winter might change in response to global warming in the Pacific–North American sector. As models disagree on changes in the amplitude and spatial pattern of ENSO in response to global warming, for simplicity the same sea surface temperature (SST) pattern of ENSO is prescribed before and after the climate warming. In a warmer climate, precipitation anomalies intensify and move eastward over the equatorial Pacific during El Niño because the enhanced mean SST warming reduces the barrier to deep convection in the eastern basin. Associated with the eastward shift of tropical convective anomalies, the ENSO-forced Pacific–North American (PNA) teleconnection pattern moves eastward and intensifies under the climate warming. By contrast, the PNA mode of atmospheric internal variability remains largely unchanged in pattern, suggesting the importance of tropical convection in shifting atmospheric teleconnections. As the ENSO-induced PNA pattern shifts eastward, rainfall anomalies are expected to intensify on the west coast of North America, and the El Niño–induced surface warming to expand eastward and occupy all of northern North America. The spatial pattern of the mean SST warming affects changes in ENSO teleconnections. The teleconnection changes are larger with patterned mean warming than in an idealized case where the spatially uniform warming is prescribed in the mean state. The results herein suggest that the eastward-shifted PNA pattern is a robust change to be expected in the future, independent of the uncertainty in changes of ENSO itself.

Full access
Jiepeng Chen, Xin Wang, Wen Zhou, Chunzai Wang, Qiang Xie, Gang Li, and Sheng Chen

Abstract

Previous research has suggested that the anomalous western North Pacific anticyclone (WNPAC) can generally persist from an El Niño mature winter to the subsequent summer, influencing southern China precipitation significantly, where southern China includes the Yangtze River valley and South China. Since the late 1970s, three extreme El Niño events have been recorded: 1982/83, 1997/98, and 2015/16. There was a sharp contrast in the change in southern China rainfall and corresponding atmospheric circulations in the decaying August between the 2015/16 extreme El Niño event and the earlier two extreme El Niño events. Enhanced rainfall in the middle and upper reaches of the Yangtze River and suppressed rainfall over South China resulted from basinwide warming in the tropical Indian Ocean induced by the extreme El Niño in August 1983 and 1998, which was consistent with previous studies. However, an anomalous western North Pacific cyclone emerged in August 2016 and then caused positive rainfall anomalies over South China and negative rainfall anomalies from the Yangtze River to the middle and lower reaches of the Yellow River. Without considering the effect of the long-term global warming trend, in August 2016 the negative SST anomalies over the western Indian Ocean and cooling in the north tropical Atlantic contributed to the anomalous western North Pacific cyclone and a rainfall anomaly pattern with opposite anomalies in South China and the Yangtze River region. Numerical experiments with the CAM5 model are conducted to confirm that cooler SST in the western Indian Ocean contributed more than cooler SST in the north tropical Atlantic to the anomalous western North Pacific cyclone and anomalous South China rainfall.

Full access
Ke Huang, Weiqing Han, Dongxiao Wang, Weiqiang Wang, Qiang Xie, Ju Chen, and Gengxin Chen

Abstract

This paper investigates the features of the Equatorial Intermediate Current (EIC) in the Indian Ocean and its relationship with basin resonance at the semiannual time scale by using in situ observations, reanalysis output, and a continuously stratified linear ocean model (LOM). The observational results show that the EIC is characterized by prominent semiannual variations with velocity reversals and westward phase propagation and that it is strongly influenced by the pronounced second baroclinic mode structure but with identifiable vertical phase propagation. Similar behavior is found in the reanalysis data and LOM results. The simulation of wind-driven equatorial wave dynamics in the LOM reveals that the observed variability of the EIC can be largely explained by the equatorial basin resonance at the semiannual period, when the second baroclinic Rossby wave reflected from the eastern boundary intensifies the directly forced equatorial Kelvin and Rossby waves in the basin interior. The sum of the first 10 modes can reproduce the main features of the EIC. Among these modes, the resonant second baroclinic mode makes the largest contribution, which dominates the vertical structure, semiannual cycle, and westward phase propagation of the EIC. The other 9 modes, however, are also important, and the superposition of the first 10 modes produces downward energy propagation in the equatorial Indian Ocean.

Full access
Zhen-Qiang Zhou, Shang-Ping Xie, Guang J. Zhang, and Wenyu Zhou

Abstract

Local correlation between sea surface temperature (SST) and rainfall is weak or even negative in summer over the Indo–western Pacific warm pool, a fact often taken as indicative of weak ocean feedback on the atmosphere. An Atmospheric Model Intercomparison Project (AMIP) simulation forced by monthly varying SSTs derived from a parallel coupled general circulation model (CGCM) run is used to evaluate AMIP skills in simulating interannual variability of rainfall. Local correlation of rainfall variability between AMIP and CGCM simulations is used as a direct metric of AMIP skill. This “perfect model” approach sidesteps the issue of model biases that complicates the traditional skill metric based on the correlation between AMIP and observations. Despite weak local SST–rainfall correlation, the AMIP–CGCM rainfall correlation exceeds a 95% significance level over most of the Indo–western Pacific warm pool, indicating the importance of remote (e.g., El Niño in the equatorial Pacific) rather than local SST forcing. Indeed, the AMIP successfully reproduces large-scale modes of rainfall variability over the Indo–western Pacific warm pool. Compared to the northwest Pacific east of the Philippines, the AMIP–CGCM rainfall correlation is low from the Bay of Bengal through the South China Sea, limited by internal variability of the atmosphere that is damped in CGCM by negative feedback from the ocean. Implications for evaluating AMIP skill in simulating observations are discussed.

Full access
Xiao-Tong Zheng, Shang-Ping Xie, Liang-Hong Lv, and Zhen-Qiang Zhou

Abstract

How El Niño–Southern Oscillation (ENSO) will change under global warming affects changes in extreme events around the world. The change of ENSO amplitude is investigated based on the historical simulations and representative concentration pathway (RCP) 8.5 experiments in phase 5 of the Coupled Model Intercomparison Project (CMIP5). The projected change in ENSO amplitude is highly uncertain with large intermodel uncertainty. By using the relative sea surface temperature (SST) as a measure of convective instability, this study finds that the spatial pattern of tropical Pacific surface warming is the major source of intermodel uncertainty in ENSO amplitude change. In models with an enhanced mean warming in the eastern equatorial Pacific, the barrier to deep convection is reduced, and the intensified rainfall anomalies of ENSO amplify the wind response and hence SST variability. In models with a reduced eastern Pacific warming, conversely, ENSO amplitude decreases. Corroborating the mean SST pattern effect, intermodel uncertainty in changes of ENSO-induced rainfall variability decreases substantially in atmospheric simulations forced by a common ocean warming pattern. Thus, reducing the uncertainty in the Pacific surface warming pattern helps improve the reliability of ENSO projections. To the extent that correcting model biases favors an El Niño–like mean warming pattern, this study suggests an increase in ENSO-related SST variance likely under global warming.

Full access
Su-Ping Zhang, Shang-Ping Xie, Qin-Yu Liu, Yu-Qiang Yang, Xin-Gong Wang, and Zhao-Peng Ren

Abstract

Sea fog is frequently observed over the Yellow Sea, with an average of 50 fog days on the Chinese coast during April–July. The Yellow Sea fog season is characterized by an abrupt onset in April in the southern coast of Shandong Peninsula and an abrupt, basin-wide termination in August. This study investigates the mechanisms for such steplike evolution that is inexplicable from the gradual change in solar radiation. From March to April over the northwestern Yellow Sea, a temperature inversion forms in a layer 100–350 m above the sea surface, and the prevailing surface winds switch from northwesterly to southerly, both changes that are favorable for advection fog. The land–sea contrast is the key to these changes. In April, the land warms up much faster than the ocean. The prevailing west-southwesterlies at 925 hPa advect warm continental air to form an inversion over the western Yellow Sea. The land–sea differential warming also leads to the formation of a shallow anticyclone over the cool Yellow and northern East China Seas in April. The southerlies on the west flank of this anticyclone advect warm and humid air from the south, causing the abrupt fog onset on the Chinese coast. The lack of such warm/moist advection on the east flank of the anticyclone leads to a gradual increase in fog occurrence on the Korean coast. The retreat of Yellow Sea fog is associated with a shift in the prevailing winds from southerly to easterly from July to August. The August wind shift over the Yellow Sea is part of a large-scale change in the East Asian–western Pacific monsoons, characterized by enhanced convection over the subtropical northwest Pacific and the resultant teleconnection into the midlatitudes, the latter known as the western Pacific–Japan pattern. Back trajectories for foggy and fog-free air masses support the results from the climatological analysis.

Full access